β-Hydroxybutyrate inhibits insulin-mediated glucose transport in mouse oxidative muscle

2010 ◽  
Vol 299 (3) ◽  
pp. E364-E373 ◽  
Author(s):  
Takashi Yamada ◽  
Shi-Jin Zhang ◽  
Håkan Westerblad ◽  
Abram Katz

Blood ketone body levels increase during starvation and untreated diabetes. Here we tested the hypothesis that ketone bodies directly inhibit insulin action in skeletal muscle. We investigated the effect of d,l-β-hydroxybutyrate (BOH; the major ketone body in vivo) on insulin-mediated glucose uptake (2-deoxyglucose) in isolated mouse soleus (oxidative) and extensor digitorum longus (EDL; glycolytic) muscle. BOH inhibited insulin-mediated glucose uptake in soleus (but not in EDL) muscle in a time- and concentration-dependent manner. Following 19.5 h of exposure to 5 mM BOH, insulin-mediated (20 mU/ml) glucose uptake was inhibited by ∼90% (substantial inhibition was also observed in 3- O-methylglucose transport). The inhibitory effect of BOH was reproduced with d- but not l-BOH. BOH did not significantly affect hypoxia- or AICAR-mediated (activates AMP-dependent protein kinase) glucose uptake. The BOH effect did not require the presence/utilization of glucose since it was also seen when glucose in the medium was substituted with pyruvate. To determine whether the BOH effect was mediated by oxidative stress, an exogenous antioxidant (1 mM tempol) was used; however, tempol did not reverse the BOH effect on insulin action. BOH did not alter the levels of total tissue GLUT4 protein or insulin-mediated tyrosine phosphorylation of the insulin receptor and insulin receptor substrate-1 but blocked insulin-mediated phosphorylation of protein kinase B by ∼50%. These data demonstrate that BOH inhibits insulin-mediated glucose transport in oxidative muscle by inhibiting insulin signaling. Thus ketone bodies may be potent diabetogenic agents in vivo.

2008 ◽  
Vol 198 (3) ◽  
pp. 561-569 ◽  
Author(s):  
Wenbin Shang ◽  
Ying Yang ◽  
Libin Zhou ◽  
Boren Jiang ◽  
Hua Jin ◽  
...  

A series of clinical trials and animal experiments have demonstrated that ginseng and its major active constituent, ginsenosides, possess glucose-lowering action. In our previous study, ginsenoside Rb1 has been shown to regulate peroxisome proliferator-activated receptor γ activity to facilitate adipogenesis of 3T3-L1 cells. However, the effect of Rb1 on glucose transport in insulin-sensitive cells and its molecular mechanism need further elucidation. In this study, Rb1 significantly stimulated basal and insulin-mediated glucose uptake in a time- and dose-dependent manner in 3T3-L1 adipocytes and C2C12 myotubes; the maximal effect was achieved at a concentration of 1 μM and a time of 3 h. In adipocytes, Rb1 promoted GLUT1 and GLUT4 translocations to the cell surface, which was examined by analyzing their distribution in subcellular membrane fractions, and enhanced translocation of GLUT4 was confirmed using the transfection of GLUT4-green fluorescence protein in Chinese Hamster Ovary cells. Meanwhile, Rb1 increased the phosphorylation of insulin receptor substrate-1 and protein kinase B (PKB), and stimulated phosphatidylinositol 3-kinase (PI3K) activity in the absence of the activation of the insulin receptor. Rb1-induced glucose uptake as well as GLUT1 and GLUT4 translocations was inhibited by the PI3K inhibitor. These results suggest that ginsenoside Rb1 stimulates glucose transport in insulin-sensitive cells by promoting translocations of GLUT1 and GLUT4 by partially activating the insulin signaling pathway. These findings are useful in understanding the hypoglycemic and anti-diabetic properties of ginseng and ginsenosides.


1998 ◽  
Vol 275 (2) ◽  
pp. E272-E277 ◽  
Author(s):  
Xiaoli Chen ◽  
Ellen G. McMahon ◽  
Eric A. Gulve

Lithium has been shown to increase glucose uptake in skeletal muscle and adipose tissues. The therapeutic effect of lithium on bipolar disease is thought to be mediated by its inhibitory effect on myo-inositol-1-monophosphatase (IMPase). We tested the hypothesis that the stimulatory effect of lithium on glucose uptake results from inhibition of IMPase and the resultant accumulation of inositol monophosphates (IP1) by comparing the effects of lithium and a selective IMPase inhibitor, L-690,488, on isolated rat adipocytes. Insulin produced a concentration-dependent stimulation of 2-deoxy-d-[14C]glucose (2-DG) transport (10 μU/ml caused half-maximal activation). Acute exposure to lithium stimulated basal glucose transport activity in a concentration-dependent manner, with a threefold stimulation at 30 mM lithium. Lithium also potentiated insulin-stimulated 2-DG transport. Lithium produced a concomitant increase in IP1 accumulation. In contrast, L-690,488 increased IP1 to levels comparable to those of lithium without stimulatory effects on 2-DG transport. These results demonstrate that stimulatory effects of lithium on glucose transport are not mediated by the inhibition of IMPase and subsequent accumulation of IP1 in rat adipocytes.


2010 ◽  
Vol 299 (3) ◽  
pp. E402-E412 ◽  
Author(s):  
Clare Stretton ◽  
Ashleigh Evans ◽  
Harinder S. Hundal

Atypical protein kinase C (aPKC) isoforms (λ and ζ) have been implicated in the control of insulin-stimulated glucose uptake in adipose and skeletal muscle, but their precise role in this process remains unclear, especially in light of accumulating evidence showing that, in response to numerous stimuli, including insulin and lipids such as ceramide, activation of aPKCs acts to negatively regulate key insulin-signaling molecules, such as insulin receptor substrate-1 (IRS-1) and protein kinase B (PKB)/cAMP-dependent PKC (Akt). In this study, we have depleted PKCλ in L6 skeletal muscle cells using RNA interference and assessed the effect this has upon insulin action. Muscle cells did not express detectable amounts of PKCζ. Depletion of PKCλ (>95%) had no significant effect on the expression of proteins participating in insulin signaling [i.e., insulin receptor, IRS-1, phosphatidylinositol 3-kinase (PI 3-kinase), PKB, or phosphate and tensin homolog deleted on chromosome 10] or those involved in glucose transport [Akt substrate of 160 kDa, glucose transporter (GLUT)1, or GLUT4]. However, PKCλ-depleted muscle cells exhibited greater activation of PKB/Akt and phosphorylation of its downstream target glycogen synthase kinase 3, in the basal state and displayed greater responsiveness to submaximal doses of insulin with respect to p85-PI 3-kinase/IRS-1 association and PKB activation. The increase in basal and insulin-induced signaling resulted in an associated enhancement of basal and insulin-stimulated glucose transport, both of which were inhibited by the PI 3-kinase inhibitor wortmannin. Additionally, like RNAi-mediated depletion of PKCλ, overexpression of a dominant-negative mutant of PKCζ induced a similar insulin-sensitizing effect on PKB activation. Our findings indicate that aPKCs are likely to play an important role in restraining proximal insulin signaling events but appear dispensable with respect to insulin-stimulated glucose uptake in cultured L6 muscle cells.


2021 ◽  
Vol 18 (10) ◽  
pp. 2109-2115
Author(s):  
Waqas Ahmad Shams ◽  
Gauhar Rehman ◽  
Samuel Okwudili Onoja ◽  
Abid Ali ◽  
Khurshaid Khan ◽  
...  

Purpose: To evaluate the in vitro antidiabetic, anti-inflammatory and antioxidant potential of the ethanol extract of Uromastyx hardwickii Skin (UHSEE). Methods: The in vitro effects of UHSEE at various concentrations (10 - 250 µg/mL) on the activities of ߙ-amylase, ߙ-glucosidase and glucose uptake by yeast cells were used to evaluate its antidiabetic potential. Nitric oxide (NO), 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydrogen peroxide inhibitory assay were employed to determine its antioxidant effects, while the anti-inflammatory effects were evaluated using human red blood cell (HRBC) membrane stabilization assay. Results: UHSEE inhibited ߙ-amylase and ߙ-glucosidase enzymes but increased glucose uptake by yeast cells in a concentration-dependent manner (p < 0.05). It also inhibited NO, DPPH, hydrogen peroxide and HRBC hemolysis in a concentration-dependent manner (p < 0.05). Conclusion: Uromastyx hardwickii skin exhibits promising good antidiabetic, antioxidant and antiinflammatory properties in vitro. However, its true potentials in this regard needs to be evaluted in vivo.


2001 ◽  
Vol 281 (6) ◽  
pp. E1205-E1212 ◽  
Author(s):  
Annie Tardif ◽  
Nathalie Julien ◽  
Amélie Pelletier ◽  
Gaétan Thibault ◽  
Ashok K. Srivastava ◽  
...  

Type 1 and type 2 diabetic patients often show elevated plasma ketone body concentrations. Because ketone bodies compete with other energetic substrates and reduce their utilization, they could participate in the development of insulin resistance in the heart. We have examined the effect of elevated levels of ketone bodies on insulin action in primary cultures of adult cardiomyocytes. Cardiomyocytes were cultured with the ketone body β-hydroxybutyrate (β-OHB) for 4 or 16 h, and insulin-stimulated glucose uptake was evaluated. Although short-term exposure to ketone bodies was not associated with any change in insulin action, our data demonstrated that preincubation with β-OHB for 16 h markedly reduced insulin-stimulated glucose uptake in cardiomyocytes. This effect is concentration dependent and persists for at least 6 h after the removal of β-OHB from the media. Ketone bodies also decreased the stimulatory effect of phorbol 12-myristate 13-acetate and pervanadate on glucose uptake. This diminution could not be explained by a change in either GLUT-1 or GLUT-4 protein content in cardiomyocytes. Chronic exposure to β-OHB was associated with impaired protein kinase B activation in response to insulin and pervanadate. These results indicate that prolonged exposure to ketone bodies altered insulin action in cardiomyocytes and suggest that this substrate could play a role in the development of insulin resistance in the heart.


Endocrinology ◽  
2011 ◽  
Vol 152 (4) ◽  
pp. 1366-1377 ◽  
Author(s):  
Elena Bonzón-Kulichenko ◽  
Teresa Fernández-Agulló ◽  
Eduardo Moltó ◽  
Rosario Serrano ◽  
Alejandro Fernández ◽  
...  

Abstract Leptin enhances the glucose utilization in most insulin target tissues and paradoxically decreases it in white adipose tissue (WAT), but knowledge of the mechanisms underlying the inhibitory effect of central leptin on the insulin-dependent glucose uptake in WAT is limited. After 7 d intracerebroventricular leptin treatment (0.2 μg/d) of rats, the overall insulin sensitivity and the responsiveness of WAT after acute in vivo insulin administration were analyzed. We also performed unilateral WAT denervation to clarify the role of the autonomic nervous system in leptin effects on the insulin-stimulated [3H]-2-deoxyglucose transport in WAT. Central leptin improved the overall insulin sensitivity but decreased the in vivo insulin action in WAT, including insulin receptor autophosphorylation, insulin receptor substrate-1 tyrosine-phosphorylation, and Akt activation. In this tissue, insulin receptor substrate-1 and glucose transporter 4 mRNA and protein levels were down-regulated after central leptin treatment. Additionally, a remarkable up-regulation of resistin, together with an augmented expression of suppressor of cytokine signaling 3 in WAT, was also observed in leptin-treated rats. As a result, the insulin-stimulated glucose transporter 4 insertion at the plasma membrane and the glucose uptake in WAT were impaired in leptin-treated rats. Finally, denervation of WAT abolished the inhibitory effect of central leptin on glucose transport and decreased suppressor of cytokine signaling 3 and resistin levels in this tissue, suggesting that resistin, in an autocrine/paracrine manner, might be a mediator of central leptin antagonism of insulin action in WAT. We conclude that central leptin, inhibiting the insulin-stimulated glucose uptake in WAT, may regulate glucose availability for triacylglyceride formation and accumulation in this tissue, thereby contributing to the control of adiposity.


2010 ◽  
Vol 298 (2) ◽  
pp. E179-E192 ◽  
Author(s):  
M. P. Sajan ◽  
G. Bandyopadhyay ◽  
A. Miura ◽  
M. L. Standaert ◽  
S. Nimal ◽  
...  

Activators of 5′-AMP-activated protein kinase (AMPK) 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR), metformin, and exercise activate atypical protein kinase C (aPKC) and ERK and stimulate glucose transport in muscle by uncertain mechanisms. Here, in cultured L6 myotubes: AICAR- and metformin-induced activation of AMPK was required for activation of aPKC and ERK; aPKC activation involved and required phosphoinositide-dependent kinase 1 (PDK1) phosphorylation of Thr410-PKC-ζ; aPKC Thr410 phosphorylation and activation also required MEK1-dependent ERK; and glucose transport effects of AICAR and metformin were inhibited by expression of dominant-negative AMPK, kinase-inactive PDK1, MEK1 inhibitors, kinase-inactive PKC-ζ, and RNA interference (RNAi)-mediated knockdown of PKC-ζ. In mice, muscle-specific aPKC (PKC-λ) depletion by conditional gene targeting impaired AICAR-stimulated glucose disposal and stimulatory effects of both AICAR and metformin on 2-deoxyglucose/glucose uptake in muscle in vivo and AICAR stimulation of 2-[3H]deoxyglucose uptake in isolated extensor digitorum longus muscle; however, AMPK activation was unimpaired. In marked contrast to AICAR and metformin, treadmill exercise-induced stimulation of 2-deoxyglucose/glucose uptake was not inhibited in aPKC-knockout mice. Finally, in intact rodents, AICAR and metformin activated aPKC in muscle, but not in liver, despite activating AMPK in both tissues. The findings demonstrate that in muscle AICAR and metformin activate aPKC via sequential activation of AMPK, ERK, and PDK1 and the AMPK/ERK/PDK1/aPKC pathway is required for metformin- and AICAR-stimulated increases in glucose transport. On the other hand, although aPKC is activated by treadmill exercise, this activation is not required for exercise-induced increases in glucose transport, and therefore may be a redundant mechanism.


2000 ◽  
Vol 278 (3) ◽  
pp. E553-E562 ◽  
Author(s):  
Ronald N. Cortright ◽  
John L. Azevedo ◽  
Qian Zhou ◽  
Madhur Sinha ◽  
Walter J. Pories ◽  
...  

There is good evidence from cell lines and rodents that elevated protein kinase C (PKC) overexpression/activity causes insulin resistance. Therefore, the present study determined the effects of PKC activation/inhibition on insulin-mediated glucose transport in incubated human skeletal muscle and primary adipocytes to discern a potential role for PKC in insulin action. Rectus abdominus muscle strips or adipocytes from obese, insulin-resistant, and insulin-sensitive patients were incubated in vitro under basal and insulin (100 nM)-stimulated conditions in the presence of GF 109203X (GF), a PKC inhibitor, or 12-deoxyphorbol 13-phenylacetate 20-acetate (dPPA), a PKC activator. PKC inhibition had no effect on basal glucose transport. GF increased ( P < 0.05) insulin-stimulated 2-deoxyglucose (2-DOG) transport approximately twofold above basal. GF plus insulin also increased ( P < 0.05) insulin receptor tyrosine phosphorylation 48% and phosphatidylinositol 3-kinase (PI 3-kinase) activity ∼50% ( P< 0.05) vs. insulin treatment alone. Similar results for GF on glucose uptake were observed in human primary adipocytes. Further support for the hypothesis that elevated PKC activity is related to insulin resistance comes from the finding that PKC activation by dPPA was associated with a 40% decrease ( P < 0.05) in insulin-stimulated 2-DOG transport. Incubation of insulin-sensitive muscles with GF also resulted in enhanced insulin action (∼3-fold above basal). These data demonstrate that certain PKC inhibitors augment insulin-mediated glucose uptake and suggest that PKC may modulate insulin action in human skeletal muscle.


2019 ◽  
Vol 26 (7) ◽  
pp. 494-501 ◽  
Author(s):  
Sameer Suresh Bhagyawant ◽  
Dakshita Tanaji Narvekar ◽  
Neha Gupta ◽  
Amita Bhadkaria ◽  
Ajay Kumar Gautam ◽  
...  

Background: Diabetes and hypertension are the major health concern and alleged to be of epidemic proportions. This has made it a numero uno subject at various levels of investigation. Glucosidase inhibitor provides the reasonable option in treatment of Diabetes Mellitus (DM) as it specifically targets post prandial hyperglycemia. The Angiotensin Converting Enzyme (ACE) plays an important role in hypertension. Therefore, inhibition of ACE in treatment of elevated blood pressure attracts special interest of the scientific community. Chickpea is a food legume and seeds contain carbohydrate binding protein- a lectin. Some of the biological properties of this lectin hitherto been elucidated. Methods: Purified by ion exchange chromatography, chickpea lectin was tested for its in vitro antioxidant, ACE-I inhibitory and anti-diabetic characteristic. Results: Lectin shows a characteristic improvement over the synthetic drugs like acarbose (oral anti-diabetic drug) and captopril (standard antihypertensive drug) when, their IC50 values are compared. Lectin significantly inhibited α-glucosidase and α-amylase in a concentration dependent manner with IC50 values of 85.41 ± 1.21 ҝg/ml and 65.05 ± 1.2 µg/ml compared to acarbose having IC50 70.20 ± 0.47 value of µg/ml and 50.52 ± 1.01 µg/ml respectively. β-Carotene bleaching assay showed antioxidant activity of lectin (72.3%) to be as active as Butylated Hydroxylanisole (BHA). In addition, lectin demonstrated inhibition against ACE-I with IC50 value of 57.43 ± 1.20 µg/ml compared to captopril. Conclusion: Lectin demonstrated its antioxidant character, ACE-I inhibition and significantly inhibitory for α-glucosidase and α-amylase seems to qualify as an anti-hyperglycemic therapeutic molecule. The biological effects of chickpea lectin display potential for reducing the parameters of medically debilitating conditions. These characteristics however needs to be established under in vivo systems too viz. animals through to humans.


Nutrients ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 123
Author(s):  
Natalia K. Kordulewska ◽  
Justyna Topa ◽  
Małgorzata Tańska ◽  
Anna Cieślińska ◽  
Ewa Fiedorowicz ◽  
...  

Lipopolysaccharydes (LPS) are responsible for the intestinal inflammatory reaction, as they may disrupt tight junctions and induce cytokines (CKs) secretion. Osthole has a wide spectrum of pharmacological effects, thus its anti-inflammatory potential in the LPS-treated Caco-2 cell line as well as in Caco-2/THP-1 and Caco-2/macrophages co-cultures was investigated. In brief, Caco-2 cells and co-cultures were incubated with LPS to induce an inflammatory reaction, after which osthole (150–450 ng/mL) was applied to reduce this effect. After 24 h, the level of secreted CKs and changes in gene expression were examined. LPS significantly increased the levels of IL-1β, -6, -8, and TNF-α, while osthole reduced this effect in a concentration-dependent manner, with the most significant decrease when a 450 ng/mL dose was applied (p < 0.0001). A similar trend was observed in changes in gene expression, with the significant osthole efficiency at a concentration of 450 ng/μL for IL1R1 and COX-2 (p < 0.01) and 300 ng/μL for NF-κB (p < 0.001). Osthole increased Caco-2 monolayer permeability, thus if it would ever be considered as a potential drug for minimizing intestinal inflammatory symptoms, its safety should be confirmed in extended in vitro and in vivo studies.


Sign in / Sign up

Export Citation Format

Share Document