scholarly journals Organ-Specific Defects in Insulin-Like Growth Factor and Insulin Receptor Signaling in Late Gestational Asymmetric Intrauterine Growth Restriction in Cited1 Mutant Mice

Endocrinology ◽  
2011 ◽  
Vol 152 (6) ◽  
pp. 2503-2516 ◽  
Author(s):  
Tatiana Novitskaya ◽  
Mariana Baserga ◽  
Mark P. de Caestecker

Late gestational placental insufficiency resulting in asymmetric intrauterine organ growth restriction (IUGR) is associated with an increased incidence of diabetes, cardiovascular and renal disease in adults. The molecular mechanisms mediating these defects are poorly understood. To explore this, we investigated the mechanisms leading to IUGR in Cited1 knockout mice, a genetic model of late gestational placental insufficiency. We show that loss of placental Cited1 leads to asymmetric IUGR with decreased liver, lung, and kidney sizes and preservation of fetal brain weight. IGF and insulin signaling regulate embryonic organ growth. IGF-I and IGF-II protein and mRNA expression are reduced in livers, lungs, and kidneys of embryonic d 18.5 embryos with IUGR. Decreased IGF-I is associated with reduced activating phosphorylation of the type 1 IGF receptor (pIGF-IR) in the kidney, whereas reduced IGF-II is associated with decreased phosphorylation of the insulin receptor (pIR) in the lung. In contrast, decreased pIR is associated with reduced IGF-I but not IGF-II in the liver. However, pancreatic β-cell mass and serum insulin levels are also decreased in mice with IUGR, suggesting that hepatic IR signaling may be regulated by alterations in fetal insulin production. These findings contrast with observations in IUGR fetal brains in which there is no change in IGF-IR/IR phosphorylation, and IGF-I and IGF-II expression is actually increased. In conclusion, IUGR disrupts normal fetal IGF and insulin production and is associated with organ-specific defects in IGF-IR and IR signaling that may regulate asymmetric IUGR in late gestational placental insufficiency.

2013 ◽  
Vol 304 (5) ◽  
pp. E516-E523 ◽  
Author(s):  
Sean W. Limesand ◽  
Paul J. Rozance ◽  
Antoni R. Macko ◽  
Miranda J. Anderson ◽  
Amy C. Kelly ◽  
...  

In pregnancy complicated by placental insufficiency (PI) and intrauterine growth restriction (IUGR), the fetus near term has reduced basal and glucose-stimulated insulin concentrations and reduced β-cell mass. To determine whether suppression of insulin concentrations and β-cell mass precedes reductions in fetal weight, which would implicate insulin deficiency as a cause of subsequent IUGR, we measured basal and glucose-stimulated insulin concentrations and pancreatic histology at 0.7 gestation in PI fetuses. Placental weights in the PI pregnancies were 40% lower than controls (265 ± 26 vs. 442 ± 41 g, P < 0.05), but fetal weights were not different. At basal conditions blood oxygen content, plasma glucose concentrations, and plasma insulin concentrations were lower in PI fetuses compared with controls (2.5 ± 0.3 vs. 3.5 ± 0.3 mmol/l oxygen, P < 0.05; 1.11 ± 0.09 vs. 1.44 ± 0.12 mmol/l glucose; 0.12 ± 0.01 vs. 0.27 ± 0.02 ng/ml insulin; P < 0.05). During a steady-state hyperglycemic clamp (∼2.5 ± 0.1 mmol/l), glucose-stimulated insulin concentrations were lower in PI fetuses than controls (0.28 ± 0.02 vs. 0.55 ± 0.04 ng/ml; P < 0.01). Plasma norepinephrine concentrations were 3.3-fold higher ( P < 0.05) in PI fetuses (635 ± 104 vs. 191 ± 91 pg/ml). Histological examination revealed less insulin area and lower β-cell mass and rates of mitosis. The pancreatic parenchyma was also less dense ( P < 0.01) in PI fetuses, but no differences were found for pancreatic progenitor cells or other endocrine cell types. These findings show that hypoglycemia, hypoxemia, and hypercatecholaminemia are present and potentially contribute to lower insulin concentrations and β-cell mass due to slower proliferation rates in early third-trimester PI fetuses before discernible reductions in fetal weight.


Endocrinology ◽  
2014 ◽  
Vol 155 (4) ◽  
pp. 1327-1339 ◽  
Author(s):  
Majida Abu Shehab ◽  
Ian Damerill ◽  
Tong Shen ◽  
Fredrick J. Rosario ◽  
Mark Nijland ◽  
...  

Fetal growth restriction (FGR) increases the risk for perinatal complications and predisposes the infant to diabetes and cardiovascular disease later in life. No treatment for FGR is available, and the underlying pathophysiology remains poorly understood. Increased IGFBP-1 phosphorylation has been implicated as an important mechanism by which fetal growth is reduced. However, to what extent circulating IGFBP-1 is phosphorylated in FGR is unknown, and the molecular mechanisms linking FGR to IGFBP-1 phosphorylation have not been established. We used umbilical cord plasma of appropriate for gestational age (AGA) and growth–restricted human fetuses and determined IGFBP-1 and IGF-I concentrations (ELISA) and site-specific IGFBP-1 phosphorylation (Western blotting using IGFBP-1 phospho-site specific antibodies). In addition, we used a baboon model of FGR produced by 30% maternal nutrient restriction and determined mammalian target of rapamycin (mTOR)C1 activity, CK2 expression/activity, IGFBP-1 expression and phosphorylation, and IGF-I levels in baboon fetal liver by Western blot, enzymatic assay, and ELISA. HepG2 cells and primary fetal baboon hepatocytes were used to explore mechanistic links between mTORC1 signaling and IGFBP-1 phosphorylation. IGFBP-1 was hyperphosphorylated at Ser101, Ser119, and Ser169 in umbilical plasma of human FGR fetuses. IGFBP-1 was also hyperphosphorylated at Ser101, Ser119, and Ser169 in the liver of growth–restricted baboon fetus. mTOR signaling was markedly inhibited, whereas expression and activity of CK2 was increased in growth–restricted baboon fetal liver in vivo. Using HepG2 cells and primary fetal baboon hepatocytes, we established a mechanistic link between mTOR inhibition, CK2 activation, IGFBP-1 hyperphosphorylation, and decreased IGF-I–induced IGF-I receptor autophosphorylation. We provide clear evidence for IGFBP-1 hyperphosphorylation in FGR and identified an mTOR and CK2-mediated mechanism for regulation of IGF-I bioavailability. Our findings are consistent with the model that inhibition of mTOR in the fetal liver, resulting in increased CK2 activity and IGFBP-1 hyperphosphorylation, constitutes a novel mechanistic link between nutrient deprivation and restricted fetal growth.


2021 ◽  
Author(s):  
Guiomar Martín ◽  
Paula Duque

Abstract When a dark-germinated seedling reaches the soil surface and perceives sunlight for the first time, light signaling is activated to adapt the plant’s development and transition to autotrophism. During this process, functional chloroplasts assemble in the cotyledons and the seedling’s cell expansion pattern is rearranged to enhance light perception. Hypocotyl cells expand rapidly in the dark, while cotyledon cell expansion is suppressed. However, light reverses this pattern by activating cell expansion in cotyledons and repressing it in hypocotyls. The fact that light-regulated developmental responses, as well as the transcriptional mechanisms controlling them, are organ-specific has been largely overlooked in previous studies of seedling de-etiolation. To analyze the expansion pattern of the hypocotyl and cotyledons separately in a given Arabidopsis (Arabidopsis thaliana) seedling, we define an organ ratio, the morphogenic index (MI), which integrates either phenotypic or transcriptomic data for each tissue and provides an important resource for functional analyses. Moreover, based on this index, we identified organ-specific molecular markers to independently quantify cotyledon and hypocotyl growth dynamics in whole-seedling samples. The combination of these marker genes with those of other developmental processes occurring during de-etiolation will allow improved molecular dissection of photomorphogenesis. Along with organ growth markers, this MI contributes a key toolset to unveil and accurately characterize the molecular mechanisms controlling seedling growth.


2006 ◽  
Vol 291 (3) ◽  
pp. E491-E498 ◽  
Author(s):  
Katie Robertson ◽  
John J. Kopchick ◽  
Jun-Li Liu

Growth hormone (GH), acting through its receptor (GHR), is essential for somatic growth and development and maintaining metabolic homeostasis. GHR gene-deficient (GHR−/−) mice exhibit drastically diminished insulin-like growth factor-I (IGF-I) levels, proportional growth retardation, elevated insulin sensitivity, and reduced islet β-cell mass. Unlike the liver, which is mostly unaffected by changes in IGF-I level, skeletal muscles express high levels of IGF-I receptor (IGF-IR). The net result of a concurrent deficiency in the actions of both GH and IGF-I, which exert opposite influences on insulin responsiveness, has not been evaluated. We studied insulin-stimulated early responses in the insulin receptor (IR), insulin receptor substrate-1 (IRS-1), and p85 subunit of phosphatidylinositol 3-kinase. Upon in vivo insulin stimulation, skeletal muscles of GHR−/− mice exhibit transient delayed responses in IR and IRS-1 phosphorylation but normal levels of p85 association with IRS-1. This is in contrast to normal/elevated insulin responses in hepatocytes and indicates tissue-specific effects of GHR gene deficiency. In addition to stimulating normal islet cell growth, GH may participate in islet cell overgrowth, which compensates for insulin resistance induced by obesity. To determine whether the islet cell overgrowth is dependent on GH signaling, we studied the response of male GHR−/− mice to high-fat diet (HFD)-induced obesity. After 17 wk on a HFD, GHR−/− mice became more significantly obese than wild-type mice and exhibited increased β-cell mass to a slightly higher extent. These data demonstrate that GH signaling is not required for compensatory islet growth. Thus, in both muscle insulin responsiveness and islet growth compensation, normal levels of GH signals do not seem to play a dominant role.


2021 ◽  
Vol 22 (13) ◽  
pp. 6978
Author(s):  
Maria J. Iraburu ◽  
Tommy Garner ◽  
Cristina Montiel-Duarte

The endocytosis of ligand-bound receptors and their eventual recycling to the plasma membrane (PM) are processes that have an influence on signalling activity and therefore on many cell functions, including migration and proliferation. Like other tyrosine kinase receptors (TKR), the insulin receptor (INSR) has been shown to be endocytosed by clathrin-dependent and -independent mechanisms. Once at the early endosome (EE), the sorting of the receptor, either to the late endosome (LE) for degradation or back to the PM through slow or fast recycling pathways, will determine the intensity and duration of insulin effects. Both the endocytic and the endosomic pathways are regulated by many proteins, the Arf and Rab families of small GTPases being some of the most relevant. Here, we argue for a specific role for the slow recycling route, whilst we review the main molecular mechanisms involved in INSR endocytosis, sorting and recycling, as well as their possible role in cell functions.


Author(s):  
Dandan Wang ◽  
Brian W. Howell ◽  
Eric C. Olson

AbstractFetal alcohol syndrome (FAS) is characterized by disrupted fetal brain development and postnatal cognitive impairment. The targets of alcohol are diverse, and it is not clear whether there are common underlying molecular mechanisms producing these disruptions. Prior work established that acute ethanol exposure causes a transient increase in tyrosine phosphorylation of multiple proteins in cultured embryonic cortical cells. In this study, we show that a similar tyrosine phosphorylation transient occurs in the fetal brain after maternal dosing with ethanol. Using phospho-specific antibodies and immunohistochemistry, we mapped regions of highest tyrosine phosphorylation in the fetal cerebral cortex and found that areas of dendritic and axonal growth showed elevated tyrosine phosphorylation 10 min after maternal ethanol exposure. These were also areas of Src expression and Src family kinase (SFK) activation loop phosphorylation (pY416) expression. Importantly, maternal pretreatment with the SFK inhibitor dasatinib completely prevents both the pY416 increase and the tyrosine phosphorylation response. The phosphorylation response was observed in the perisomatic region and neurites of immature migrating and differentiating primary neurons. Importantly, the initial phosphotyrosine transient (~ 30 min) targets both Src and Dab1, two critical elements in Reelin signaling, a pathway required for normal cortical development. This initial phosphorylation response is followed by sustained reduction in Ser3 phosphorylation of n-cofilin, a critical actin severing protein and an identified downstream effector of Reelin signaling. This biochemical disruption is associated with sustained reduction of F-actin content and disrupted Golgi apparatus morphology in developing cortical neurons. The finding outlines a model in which the initial activation of SFKs by ethanol has the potential to disrupt multiple developmentally important signaling systems for several hours after maternal exposure.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Raj Raghupathy ◽  
Majedah Al-Azemi ◽  
Fawaz Azizieh

Intrauterine growth restriction (IUGR) is an important perinatal syndrome that poses several serious short- and long-term effects. We studied cytokine production by maternal peripheral blood lymphocytes stimulated by trophoblast antigens. 36 women with a diagnosis of IUGR and 22 healthy women with normal fetal growth were inducted. Peripheral blood mononuclear cells were stimulated with trophoblast antigens and levels of the proinflammatory cytokines IL-6, IL-8, IL-12, IL-23, IFNγ, and TNFα and the anti-inflammatory cytokines IL-4, IL-10, and IL-13 were measured in culture supernatants by ELISA. IL-8 was produced at higher levels by blood cells of the IUGR group than normal pregnant women, while IL-13 was produced at lower levels. IL-8, IFNγ, and TNFα were higher in IUGR with placental insufficiency than in normal pregnancy. IL-12 levels were higher and IL-10 levels were lower in IUGR with placental insufficiency than in IUGR without placental insufficiency. We suggest that a stronger pro-inflammatory bias exists in IUGR as compared to normal pregnancy and in IUGR with placental insufficiency when compared to IUGR without placental insufficiency. Several ratios of proinflammatory to anti-inflammatory cytokines also support the existence of an inflammatory bias in IUGR.


Sign in / Sign up

Export Citation Format

Share Document