scholarly journals Circadian Dynamics of the Cone-Rod Homeobox (CRX) Transcription Factor in the Rat Pineal Gland and Its Role in Regulation of Arylalkylamine N-Acetyltransferase (AANAT)

Endocrinology ◽  
2014 ◽  
Vol 155 (8) ◽  
pp. 2966-2975 ◽  
Author(s):  
Kristian Rohde ◽  
Louise Rovsing ◽  
Anthony K. Ho ◽  
Morten Møller ◽  
Martin F. Rath

The cone-rod homeobox (Crx) gene encodes a transcription factor in the retina and pineal gland. Crx deficiency influences the pineal transcriptome, including a reduced expression of arylalkylamine N-acetyltransferase (Aanat), a key enzyme in nocturnal pineal melatonin production. However, previous functional studies on pineal Crx have been performed in melatonin-deficient mice. In this study, we have investigated the role of Crx in the melatonin-proficient rat pineal gland. The current study shows that pineal Crx transcript levels exhibit a circadian rhythm with a peak in the middle of the night, which is transferred into daily changes in CRX protein. The study further shows that the sympathetic innervation of the pineal gland controls the Crx rhythm. By use of adenovirus-mediated short hairpin RNA gene knockdown targeting Crx mRNA in primary rat pinealocyte cell culture, we here show that intact levels of Crx mRNA are required to obtain high levels of Aanat expression, whereas overexpression of Crx induces Aanat transcription in vitro. This regulatory function of Crx is further supported by circadian analysis of Aanat in the pineal gland of the Crx-knockout mouse. Our data indicate that the rhythmic nature of pineal CRX protein may directly modulate the daily profile of Aanat expression by inducing nighttime expression of this enzyme, thus facilitating nocturnal melatonin synthesis in addition to its role in ensuring a correct tissue distribution of Aanat expression.

Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1870
Author(s):  
Klaudia Skrzypek ◽  
Grażyna Adamek ◽  
Marta Kot ◽  
Bogna Badyra ◽  
Marcin Majka

Rhabdomyosarcoma (RMS), is the most frequent soft tissue tumor in children that originates from disturbances in differentiation process. Mechanisms leading to the development of RMS are still poorly understood. Therefore, by analysis of two RMS RH30 cell line subclones, one subclone PAX7 negative, while the second one PAX7 positive, and comparison with other RMS cell lines we aimed at identifying new mechanisms crucial for RMS progression. RH30 subclones were characterized by the same STR profile, but different morphology, rate of proliferation, migration activity and chemotactic abilities in vitro, as well as differences in tumor morphology and growth in vivo. Our analysis indicated a different level of expression of adhesion molecules (e.g., from VLA and ICAM families), myogenic microRNAs, such as miR-206 and transcription factors, such as MYOD, MYOG, SIX1, and ID. Silencing of PAX7 transcription factor with siRNA confirmed the crucial role of PAX7 transcription factor in proliferation, differentiation and migration of RMS cells. To conclude, our results suggest that tumor cell lines with the same STR profile can produce subclones that differ in many features and indicate crucial roles of PAX7 and ID proteins in the development of RMS.


1992 ◽  
Vol 12 (1) ◽  
pp. 30-37
Author(s):  
M T Killeen ◽  
J F Greenblatt

RAP30/74 is a human general transcription factor that binds to RNA polymerase II and is required for initiation of transcription in vitro regardless of whether the promoter has a recognizable TATA box (Z. F. Burton, M. Killeen, M. Sopta, L. G. Ortolan, and J. F. Greenblatt, Mol. Cell. Biol. 8:1602-1613, 1988). Part of the amino acid sequence of RAP30, the small subunit of RAP30/74, has limited homology with part of Escherichia coli sigma 70 (M. Sopta, Z. F. Burton, and J. Greenblatt, Nature (London) 341:410-414, 1989). To determine which sigmalike activities of RAP30/74 could be attributed to RAP30, we purified human RAP30 and a RAP30-glutathione-S-transferase fusion protein that had been produced in E. coli. Bacterially produced RAP30 bound to RNA polymerase II in the absence of RAP74. Both partially purified natural RAP30/74 and recombinant RAP30 prevented RNA polymerase II from binding nonspecifically to DNA. In addition, nonspecific transcription by RNA polymerase II was greatly inhibited by RAP30-glutathione-S-transferase. DNA-bound RNA polymerase II could be removed from DNA by partially purified RAP30/74 but not by bacterially expressed RAP30. Thus, the ability of RAP30/74 to recruit RNA polymerase II to a promoter-bound preinitiation complex may be an indirect consequence of its ability to suppress nonspecific binding of RNA polymerase II to DNA.


Author(s):  
Jelena Damm ◽  
Joachim Roth ◽  
Rüdiger Gerstberger ◽  
Christoph Rummel

AbstractBackground:Studies with NF-IL6-deficient mice indicate that this transcription factor plays a dual role during systemic inflammation with pro- and anti-inflammatory capacities. Here, we aimed to characterize the role of NF-IL6 specifically within the brain.Methods:In this study, we tested the capacity of short interfering (si) RNA to silence the inflammatory transcription factor nuclear factor-interleukin 6 (NF-IL6) in brain cells underResults:In cells of a mixed neuronal and glial primary culture from the ratConclusions:This approach was, thus, not suitable to characterize the role NF-IL6 in the brain


Life Sciences ◽  
2014 ◽  
Vol 94 (2) ◽  
pp. 122-129 ◽  
Author(s):  
Darine Villela ◽  
Larissa de Sá Lima ◽  
Rafael Peres ◽  
Rodrigo Antonio Peliciari-Garcia ◽  
Fernanda Gaspar do Amaral ◽  
...  

2002 ◽  
Vol 159 (5) ◽  
pp. 867-880 ◽  
Author(s):  
Lisette Hari ◽  
Véronique Brault ◽  
Maurice Kléber ◽  
Hye-Youn Lee ◽  
Fabian Ille ◽  
...  

β-Catenin plays a pivotal role in cadherin-mediated cell adhesion. Moreover, it is a downstream signaling component of Wnt that controls multiple developmental processes such as cell proliferation, apoptosis, and fate decisions. To study the role of β-catenin in neural crest development, we used the Cre/loxP system to ablate β-catenin specifically in neural crest stem cells. Although several neural crest–derived structures develop normally, mutant animals lack melanocytes and dorsal root ganglia (DRG). In vivo and in vitro analyses revealed that mutant neural crest cells emigrate but fail to generate an early wave of sensory neurogenesis that is normally marked by the transcription factor neurogenin (ngn) 2. This indicates a role of β-catenin in premigratory or early migratory neural crest and points to heterogeneity of neural crest cells at the earliest stages of crest development. In addition, migratory neural crest cells lateral to the neural tube do not aggregate to form DRG and are unable to produce a later wave of sensory neurogenesis usually marked by the transcription factor ngn1. We propose that the requirement of β-catenin for the specification of melanocytes and sensory neuronal lineages reflects roles of β-catenin both in Wnt signaling and in mediating cell–cell interactions.


1990 ◽  
Vol 272 (3) ◽  
pp. 797-803 ◽  
Author(s):  
E S Gonos ◽  
J P Goddard

The role of a tRNA-like structure within the 5′-flanking sequence of a human tRNA(Glu) gene in the modulation of its transcription in vitro by HeLa cell extracts has been investigated using several deletion mutants of a recombinant of the gene which lacked part or all of the tRNA-like structure. The transcriptional efficiency of four mutants was the same as that of the wild-type recombinant, two mutants had decreased transcriptional efficiency, one was more efficient, and one, lacking part of the 5′ intragenic control region, was inactive. Correlation of the transcriptional efficiencies with the position and the size of the 5′-flanking sequence that was deleted indicated that the tRNA-like structure may be deleted without loss of transcriptional efficiency. Current models for the modulation of tRNA gene transcription by the 5′-flanking sequence are assessed in the light of the results obtained, and a potential model is presented.


2021 ◽  
Author(s):  
Marion Aruanno ◽  
Samantha Gozel ◽  
Isabelle Mouyna ◽  
Josie E Parker ◽  
Daniel Bachmann ◽  
...  

Abstract Aspergillus fumigatus is the main cause of invasive aspergillosis, for which azole drugs are the first-line therapy. Emergence of pan-azole resistance among A. fumigatus is concerning and has been mainly attributed to mutations in the target gene (cyp51A). However, azole resistance may also result from other mutations (hmg1, hapE) or other adaptive mechanisms. We performed microevolution experiment exposing an A. fumigatus azole-susceptible strain (Ku80) to sub-minimal inhibitory concentration of voriconazole to analyze emergence of azole resistance. We obtained a strain with pan-azole resistance (Ku80R), which was partially reversible after drug relief, and without mutations in cyp51A, hmg1, and hapE. Transcriptomic analyses revealed overexpression of the transcription factor asg1, several ATP-binding cassette (ABC) and major facilitator superfamily transporters and genes of the ergosterol biosynthesis pathway in Ku80R. Sterol analysis showed a significant decrease of the ergosterol mass under voriconazole exposure in Ku80, but not in Ku80R. However, the proportion of the sterol compounds was similar between both strains. To further assess the role of transporters, we used the ABC transporter inhibitor milbemycine oxime (MLB). MLB inhibited transporter activity in both Ku80 and Ku80R and demonstrated some potentiating effect on azole activity. Criteria for synergism were reached for MLB and posaconazole against Ku80. Finally, deletion of asg1 revealed some role of this transcription factor in controlling drug transporter expression, but had no impact on azole susceptibility. This work provides further insight in mechanisms of azole stress adaptation and suggests that drug transporters inhibition may represent a novel therapeutic target. Lay Summary A pan-azole-resistant strain was generated in vitro, in which drug transporter overexpression was a major trait. Analyses suggested a role of the transporter inhibitor milbemycin oxime in inhibiting drug transporters and potentiating azole activity.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Marie-Ange Renault ◽  
Jerome Roncalli ◽  
Joern Tongers ◽  
Sol Misener ◽  
Tina Thorne ◽  
...  

Gli transcription factors are mediators of hedgehog signaling and have been shown to be critical in several steps during development. We have shown that the Hedgehog pathway is reactivated in the adult cardiovascular system under ischemic conditions, however the specific role of Gli3 has not been elucidated. Adenoviral mediated overexpression of Gli3 promotes HUVEC migration (250±58% of control, p<0.001) while down regulation of Gli3 via siRNA delayed tube formation on Matrigel (total tube length after 8 hours 6.86 vs. 70.76 control), suggesting a possible role of Gli3 in angiogenesis. We next investigated the role of Gli3 in angiogenesis using Gli3 +/− (Gli3 +/XtJ ) mice, a well established model of reduced Gli3 expression. VEGF-induced corneal angiogenesis was impaired in Gli3 +/− mice compared to WT. The role of Gli3 in angiogenesis was then confirmed in two ischemia models. Hind-limb ischemia (HLI) was induced by resection of the left femoral artery. Capillary density was reduced by a mean of 48.40±12.08% in Gli3 +/− mice vs. WT 7, 14 and 28 days. Myocardial infarction (MI) was induced by ligation of the LAD. 28 days after MI, left ventricular function assessed by echo and histological analysis revealed that Gli3 +/− mice exhibit reduced ejection fraction (27.92±4.49% versus 37.56±7.02% for the WT, p=0.004), increased fibrosis area (33.65±9.73% versus 19.81±5.40% for the WT, p=0.007) and a decrease capillary density in the ischemic and border zones. These data indicate that Gli3 deficiency leads to impaired angiogenesis in both ischemic and non ischemic conditions. Moreover, the impairment in ischemia induced neovascularization is associated with more severe impairment of cardiac function after MI. The mechanism of Gli3’s effects was then investigated in vitro . Promoter reporter assays revealed that Gli3 overexpression inhibits Gli-dependent transcription, while Western analysis show increased Akt phosphorylation, activation of the ERK1/2 and increased c-Fos expression. Using a dominant negative Akt expressing virus and a MEK1/2 inhibitor, we show that Gli3 induced-EC migration is dependent on Akt and ERK1/2. These studies provide the first evidence that the Gli3 transcription factor regulates angiogenesis and EC phenotype.


Sign in / Sign up

Export Citation Format

Share Document