scholarly journals Combined Loss of the GATA4 and GATA6 Transcription Factors in Male Mice Disrupts Testicular Development and Confers Adrenal-Like Function in the Testes

Endocrinology ◽  
2015 ◽  
Vol 156 (5) ◽  
pp. 1873-1886 ◽  
Author(s):  
Maria B. Padua ◽  
Tianyu Jiang ◽  
Deborah A. Morse ◽  
Shawna C. Fox ◽  
Heather M. Hatch ◽  
...  

The roles of the GATA4 and GATA6 transcription factors in testis development were examined by simultaneously ablating Gata4 and Gata6 with Sf1Cre (Nr5a1Cre). The deletion of both genes resulted in a striking testicular phenotype. Embryonic Sf1Cre; Gata4flox/flox Gata6flox/flox (conditional double mutant) testes were smaller than control organs and contained irregular testis cords and fewer gonocytes. Gene expression analysis revealed significant down-regulation of Dmrt1 and Mvh. Surprisingly, Amh expression was strongly up-regulated and remained high beyond postnatal day 7, when it is normally extinguished. Neither DMRT1 nor GATA1 was detected in the Sertoli cells of the mutant postnatal testes. Furthermore, the expression of the steroidogenic genes Star, Cyp11a1, Hsd3b1, and Hsd17b3 was low throughout embryogenesis. Immunohistochemical analysis revealed a prominent reduction in cytochrome P450 side-chain cleavage enzyme (CYP11A1)- and 3β-hydroxysteroid dehydrogenase-positive (3βHSD) cells, with few 17α-hydroxylase/17,20 lyase-positive (CYP17A1) cells present. In contrast, in postnatal Sf1Cre; Gata4flox/flox Gata6flox/flox testes, the expression of the steroidogenic markers Star, Cyp11a1, and Hsd3b6 was increased, but a dramatic down-regulation of Hsd17b3, which is required for testosterone synthesis, was observed. The genes encoding adrenal enzymes Cyp21a1, Cyp11b1, Cyp11b2, and Mcr2 were strongly up-regulated, and clusters containing numerous CYP21A2-positive cells were localized in the interstitium. These data suggest a lack of testis functionality, with a loss of normal steroidogenic testis function, concomitant with an expansion of the adrenal-like cell population in postnatal conditional double mutant testes. Sf1Cre; Gata4flox/flox Gata6flox/flox animals of both sexes lack adrenal glands; however, despite this deficiency, males are viable in contrast to the females of the same genotype, which die shortly after birth.

2019 ◽  
Vol 31 (6) ◽  
pp. 1091 ◽  
Author(s):  
Yishu Wang ◽  
Enhang Lu ◽  
Riqiang Bao ◽  
Ping Xu ◽  
Fen Feng ◽  
...  

The Notch signalling pathway in the mammalian ovary regulates granulosa cell proliferation. However, the effects of Notch signalling on steroidogenesis are unclear. In this study we cultured mouse ovarian granulosa cells from preantral follicles invitro and observed the effect of Notch signalling on steroidogenesis through overexpression, knockdown and inhibition of Notch signalling. Activation of Notch signalling decreased progesterone and oestrogen secretion. In contrast, inhibition of Notch signalling increased the production of progesterone and oestrogen. Expression of the genes for steroidogenic-related enzymes, including 3β-hydroxysteroid dehydrogenase, p450 cholesterol side-chain cleavage enzyme and aromatase, was repressed after stimulation of Notch signalling. The expression of upstream transcription factors, including steroidogenic factor 1 (SF1), Wilms’ tumour 1 (Wt1), GATA-binding protein 4 (Gata4) and Gata6, was also inhibited after stimulation of Notch signalling. Production of interleukin (IL)-6 was positively correlated with Notch signalling and negatively correlated with the expression of these transcription factors and enzymes. In conclusion, Notch signalling regulated progesterone and oestrogen secretion by affecting the expression of upstream transcription factors SF1, Wt1, Gata4 and Gata6, as well as downstream steroidogenic-related enzymes. IL-6, which may be regulated directly by Notch signalling, may contribute to this process. Our findings add to the understanding of the diverse functions of Notch signalling in the mammalian ovary.


2013 ◽  
pp. 1-1
Author(s):  
Alisdair Boag ◽  
Kerry McLaughlin ◽  
Mike Christie ◽  
Peter Graham ◽  
Harriet Syme ◽  
...  

Author(s):  
Sergei A. Usanov ◽  
Paavo Honkakoski ◽  
Matti A. Lang ◽  
Markku Pasanen ◽  
Olavi Pelkonen ◽  
...  

Endocrinology ◽  
2012 ◽  
Vol 153 (7) ◽  
pp. 3258-3268 ◽  
Author(s):  
Donghui Li ◽  
Eric B. Dammer ◽  
Marion B. Sewer

In the human adrenal cortex, cortisol is synthesized from cholesterol by members of the cytochrome P450 superfamily and hydroxysteroid dehydrogenases. Both the first and last steps of cortisol biosynthesis occur in mitochondria. Based on our previous findings that activation of ACTH signaling changes the ratio of nicotinamide adenine dinucleotide (NAD) phosphate to reduced NAD phosphate in adrenocortical cells, we hypothesized that pyridine nucleotide metabolism may regulate the activity of the mitochondrial NAD+-dependent sirtuin (SIRT) deacetylases. We show that resveratrol increases the protein expression and half-life of P450 side chain cleavage enzyme (P450scc). The effects of resveratrol on P450scc protein levels and acetylation status are dependent on SIRT3 and SIRT5 expression. Stable overexpression of SIRT3 abrogates the cellular content of acetylated P450scc, concomitant with an increase in P450scc protein expression and cortisol secretion. Mutation of K148 and K149 to alanine stabilizes the expression of P450scc and results in a 1.5-fold increase in pregnenolone biosynthesis. Finally, resveratrol also increases the protein expression of P450 11β, another mitochondrial enzyme required for cortisol biosynthesis. Collectively, this study identifies a role for NAD+-dependent SIRT deacetylase activity in regulating the expression of mitochondrial steroidogenic P450.


2013 ◽  
Vol 98 (2) ◽  
pp. 713-720 ◽  
Author(s):  
Meng Kian Tee ◽  
Michal Abramsohn ◽  
Neta Loewenthal ◽  
Mark Harris ◽  
Sudeep Siwach ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document