GH and IGF-I Supplementation Increase Cortical Bone Traits in ALS-Deficient Mice

2011 ◽  
pp. P1-216-P1-216
Author(s):  
Hayden William Courtland ◽  
Hui Sun ◽  
Mordechay Bet-On ◽  
Shoshana Yakar
Keyword(s):  
Igf I ◽  
2006 ◽  
Vol 189 (2) ◽  
pp. 279-287 ◽  
Author(s):  
Yongmei Wang ◽  
Takeshi Sakata ◽  
Hashem Z Elalieh ◽  
Scott J Munson ◽  
Andrew Burghardt ◽  
...  

Parathyroid hormone (PTH) exerts both catabolic and anabolic actions on bone. Studies on the skeletal effects of PTH have seldom considered the effects of gender. Our study was designed to determine whether the response of mouse bone to PTH differed according to sex. As a first step, we analyzed gender differences with respect to bone mass and structural properties of 4 month old PTH treated (80 μg/kg per day for 2 weeks) male and female CD-1 mice. PTH significantly increased fat free weight/body weight, periosteal bone formation rate, mineral apposition rate, and endosteal single labeling surface, while significantly decreasing medullary area in male mice compared with vehicle treated controls, but induced no significant changes in female mice. We then analyzed the gender differences in bone marrow stromal cells (BMSC) isolated from 4 month old male and female CD-1 mice following treatment with PTH (80 μg/kg per day for 2 weeks). PTH significantly increased the osteogenic colony number and the alkaline phosphatase (ALP) activity (ALP/cell) by day 14 in cultures of BMSCs from male and female mice. PTH also increased the mRNA level of receptor activator of nuclear factor κB ligand in the bone tissue (marrow removed) of both females and males. However, PTH increased the mRNA levels of IGF-I and IGF-IR only in the bones of male mice. Our results indicate that on balance a 2-weeks course of PTH is anabolic on cortical bone in this mouse strain. These effects are more evident in the male mouse. These differences between male and female mice may reflect the greater response to PTH of IGF-I and IGF-IR gene expression in males enhancing the anabolic effect on cortical bone.


2010 ◽  
Vol 31 (5) ◽  
pp. 307-318 ◽  
Author(s):  
Hideo Masuki ◽  
Minqi Li ◽  
Tomoka Hasegawa ◽  
Reiko Suzuki ◽  
Guo Ying ◽  
...  
Keyword(s):  

Bone Research ◽  
2018 ◽  
Vol 6 (1) ◽  
Author(s):  
Kevin A. Maupin ◽  
Kevin Weaver ◽  
Alexis Bergsma ◽  
Cheryl Christie ◽  
Zhendong A. Zhong ◽  
...  

2001 ◽  
Vol 168 (2) ◽  
pp. 347-351 ◽  
Author(s):  
T Yamashita ◽  
I Sekiya ◽  
N Kawaguchi ◽  
K Kashimada ◽  
A Nifuji ◽  
...  

Unloading induces bone loss as seen in experimental animals as well as in space flight or in bed-ridden conditions; however, the mechanisms involved in this phenomenon are not fully understood. Klotho mutant mice exhibit osteopetrosis in the metaphyseal regions indicating that the klotho gene product is involved in the regulation of bone metabolism. To examine whether the klotho gene product is involved in the unloading-induced bone loss, the response of the osteopetrotic cancellous bones in these mice was investigated. Sciatic nerve resection was conducted using klotho mutant (kl/kl) and control heterozygous mice (+/kl) and its effect on bone was examined by micro-computed tomography (microCT). As reported previously for wild-type mice (+/+), about 30% bone loss was induced in heterozygous mice (+/kl) by unloading due to neurectomy within 30 days of the surgery. By contrast, kl/kl mice were resistant against bone loss induced by unloading after neurectomy. Unloading due to neurectomy also induced a small but significant bone loss in the cortical bone of the mid-shaft of the femur in the heterozygous mice; no reduction in the cortical bone was observed in kl/kl mice. These results indicate that klotho mutant mice are resistant against bone loss induced by unloading due to neurectomy in both cortical and trabecular bone and indicate that klotho is one of the molecules involved in the loss of bone by unloading.


2011 ◽  
Author(s):  
Naokazu Ibuki ◽  
Kiyoshi Takahara ◽  
Howard Tearle ◽  
Martin E. Gleave ◽  
Christopher J. Ong ◽  
...  

2020 ◽  
pp. jbc.RA120.015571
Author(s):  
Sara Rosendahl ◽  
Rima Sulniute ◽  
Michaela Eklund ◽  
Cecilia Koskinen Holm ◽  
Marcus J. O. Johansson ◽  
...  

Increasing evidence emphasizes the importance of chemokines and chemokine receptors as regulators of bone remodeling. The C-C chemokine receptor 3 (CCR3) is dramatically up-regulated during osteoclastogenesis but the role of CCR3 in osteoclast formation and bone remodeling in adult mice is unknown. Herein, we used bone marrow macrophages (BMM) derived from adult male CCR3-proficient and -deficient mice to study the role of CCR3 in osteoclast formation and activity. CCR3 deficiency was associated with formation of giant hypernucleated osteoclasts, enhanced bone resorption when cultured on bone slices and altered mRNA expression of related chemokine receptors and ligands. Additionally, primary mouse calvarial osteoblasts isolated from CCR3-deficient mice showed increased mRNA expression of the osteoclast activator related gene, receptor activator of nuclear factor kappa-B ligand (Rankl), and osteoblast differentiation associated genes. Micro-computed tomography analyses of femurs from CCR3-deficient mice revealed a bone phenotype that entailed less cortical thickness and volume. Consistent with our in vitro studies, the number of osteoclasts did not differ between the genotypes in vivo. Moreover, an increased endo-cortical osteoid mineralization rate and higher trabecular and cortical bone formation rate was displayed in CCR3-deficient mice. Collectively, our data show that CCR3 deficiency influences osteoblast and osteoclast differentiation and that it is associated with thinner cortical bone in adult male mice.


2009 ◽  
Vol 296 (1) ◽  
pp. E147-E156 ◽  
Author(s):  
A. E. Stevenson ◽  
B. A. J. Evans ◽  
E. F. Gevers ◽  
C. Elford ◽  
R. W. J. McLeod ◽  
...  

Growth hormone (GH)-deficiency is usually associated with elevated adiposity, hyperleptinemia, and increased fracture risk. Since leptin is thought to enhance cortical bone formation, we have investigated the contribution of elevated adiposity and hyperleptinemia on femoral strength in rodent models of GH deficiency. Quantification of the transpubertal development of femoral strength in the moderately GH-deficient/hyperleptinemic Tgr rat and the profoundly GH-deficient/hypoleptinemic dw/dw rat revealed that the mechanical properties of cortical bone in these two models were similarly compromised, a 25–30% reduction in failure load being entirely due to impairment of geometric variables. In contrast, murine models of partial (GH antagonist transgenic) and complete (GH receptor-null) loss of GH signaling and elevated adiposity showed an impairment of femoral cortical strength proportionate to the reduction of GH signaling. To determine whether impaired femoral strength is exacerbated by obesity/hyperleptinemia, femoral strength was assessed in dw/dw rats following two developmental manipulations that elevate abdominal adiposity and circulating leptin, neonatal monosodium glutamate (MSG) treatment, and maintenance on an elevated fat diet. The additional impairment of femoral strength following MSG treatment is likely to have resulted from a reduction in residual activity of the hypothalamo-pituitary-GH-IGF-I axis, but consumption of elevated dietary fat, which did not reduce circulating IGF-I, failed to exacerbate the compromised femoral strength in dw/dw rats. Taken together, our data indicate that the obesity and hyperleptinemia usually associated with GH deficiency do not exert a significant influence over the strength of cortical bone.


Reproduction ◽  
2006 ◽  
Vol 131 (3) ◽  
pp. 525-532 ◽  
Author(s):  
Karin A Slot ◽  
Jan Kastelijn ◽  
Anne Bachelot ◽  
Paul A Kelly ◽  
Nadine Binart ◽  
...  

GH influences female fertility. The goal of the present study was to obtain more insight into the effect of loss of GH signalling, as observed in humans suffering from Laron syndrome, on ovarian function. Therefore, serial paraffin sections of ovaries of untreated and IGF-I-treated female GH receptor knock-out (GHR/GHBP-KO) mice were examined to determine the follicular reserve and the percentage of follicular atresia in each ovary. Our observations demonstrate that the amount of primordial follicles was significantly elevated in GHR/GHBP-KO mice, while the numbers of primary, preantral and antral follicles were lower compared with wild-type values. The reduced number of healthy growing follicles in GHR/GHBP-KO mice was accompanied by a significant increase in the percentage of atretic follicles. IGF-I treatment of GHR/GHBP-KO mice for 14 days resulted in a reduced number of primordial follicles, an increased number of healthy antral follicles, and a decreased percentage of atretic follicles. The results of the present study suggest that GH may play a role, either directly or indirectly, via for instance IGF-I, in the recruitment of primordial follicles into the growing pool. Furthermore, GH seems to protect antral follicles, directly or indirectly from undergoing atresia.


2002 ◽  
Vol 16 (6) ◽  
pp. 1394-1406 ◽  
Author(s):  
Christopher J. Greenhalgh ◽  
Patrick Bertolino ◽  
Sylvia L. Asa ◽  
Donald Metcalf ◽  
Jason E. Corbin ◽  
...  

Abstract Mice lacking suppressor of cytokine signaling-2 (SOCS-2) exhibit accelerated postnatal growth resulting in adult mice that are 1.3 to 1.5 times the size of normal mice. In this study we examined the somatotrophic pathway to determine whether the production or actions of GH or IGF-I are altered in these mice. We demonstrated that SOCS-2−/− mice do not have elevated GH levels and suffer no major pituitary dysmorphogenesis, and that SOCS-2-deficient embryonic fibroblasts do not have altered IGF-I signaling. Primary hepatocytes from SOCS-2−/− mice, however, did have moderately prolonged signal transducer and activator of transcription 5 signaling in response to GH stimulation. Furthermore, the deletion of SOCS-2 from mice also lacking signal transducer and activator of transcription 5b had little effect on growth, suggesting that the action of SOCS-2 may be the regulation of the GH signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document