Effects of thyroid hormone on norepinephrine signaling in brown adipose tissue. I. Beta 1- and beta 2-adrenergic receptors and cyclic adenosine 3',5'-monophosphate generation.

Endocrinology ◽  
1995 ◽  
Vol 136 (8) ◽  
pp. 3267-3276 ◽  
Author(s):  
A Rubio ◽  
A Raasmaja ◽  
A L Maia ◽  
K R Kim ◽  
J E Silva
1991 ◽  
Vol 277 (3) ◽  
pp. 625-629 ◽  
Author(s):  
J P Revelli ◽  
R Pescini ◽  
P Muzzin ◽  
J Seydoux ◽  
M G Fitzgerald ◽  
...  

The aim of the present work was to study the effect of hypothyroidism on the expression of the beta-adrenergic receptor (beta-AR) in interscapular brown adipose tissue and heart. The total density of plasma membrane beta-AR per tissue is decreased by 44% in hypothyroid rat interscapular brown adipose tissue and by 55% in hypothyroid rat heart compared with euthyroid controls. The effects of hypothyroidism on the density of both beta 1- and beta 2-AR subtypes were also determined in competition displacement experiments. The densities of beta 1- and beta 2-AR per tissue are decreased by 50% and 48% respectively in interscapular brown adipose tissue and by 52% and 54% in the heart. Northern blot analysis of poly(A)+ RNA from hypothyroid rat interscapular brown adipose tissue demonstrated that the levels of beta 1- and beta 2-AR mRNA per tissue are decreased by 73% and 58% respectively, whereas in hypothyroid heart, only the beta 1-AR mRNA is decreased, by 43%. The effect of hypothyroidism on the beta 1-AR mRNA is significantly more marked in the interscapular brown adipose tissue than in the heart. These results indicate that beta-AR mRNA levels are differentially regulated in rat interscapular brown adipose tissue and heart, and suggest that the decrease in beta-AR number in interscapular brown adipose tissue and heart of hypothyroid animals may in part be explained by a decreased steady-state level of beta-AR mRNA.


PLoS ONE ◽  
2018 ◽  
Vol 13 (12) ◽  
pp. e0209225
Author(s):  
Evie P. M. Broeders ◽  
Guy H. E. J. Vijgen ◽  
Bas Havekes ◽  
Nicole D. Bouvy ◽  
Felix M. Mottaghy ◽  
...  

1993 ◽  
Vol 265 (2) ◽  
pp. E252-E258 ◽  
Author(s):  
W. J. Yeh ◽  
P. Leahy ◽  
H. C. Freake

Thyroid hormone regulates lipogenesis differently in rat liver and brown adipose tissue (BAT). In the hypothyroid state, lipogenesis is suppressed in liver but enhanced in BAT. Here we investigated the mechanisms underlying increased lipogenesis in hypothyroid BAT. Housing the animals at 28 degrees C decreased lipogenesis in hypothyroid BAT to euthyroid levels. Denervation resulted in a 90% reduction in lipogenesis in hypothyroid BAT such that levels were lower than in euthyroid tissue. Thyroid hormone treatment of hypothyroid rats stimulated fatty acid synthesis in denervated BAT, as in liver, but decreased it in intact BAT. Steady-state levels of mRNA encoding acetyl-CoA carboxylase, fatty-acid synthase, and spor 14 were measured in similar animals by Northern analysis. The expression of these mRNAs mirrored the lipogenic data, showing that both thyroid hormone and the sympathetic nervous system work at a pretranslational level in this tissue. These data suggest that the increased BAT lipogenesis found with hypothyroidism is mediated by the sympathetic nervous system to counter the reduction in metabolic rate in these animals.


2019 ◽  
Vol 51 (10) ◽  
pp. 671-677 ◽  
Author(s):  
Maurício Martins da Silva ◽  
Carlos Frederico Lima Gonçalves ◽  
Leandro Miranda-Alves ◽  
Rodrigo Soares Fortunato ◽  
Denise P. Carvalho ◽  
...  

AbstractPlastics are ubiquitously present in our daily life and some components of plastics are endocrine-disrupting chemicals, such as bisphenol A and phthalates. Herein, we aimed to evaluate the effect of plastic endocrine disruptors on type 1 and type 2 deiodinase activities, enzymes responsible for the conversion of the pro-hormone T4 into the biologically active thyroid hormone T3, both in vitro and in vivo. Initially, we incubated rat liver type 1 deiodinase and brown adipose tissue type 2 deiodinase samples with 0.5 mM of the plasticizers, and the deiodinase activity was measured. Among them, only BPA was capable to inhibit both type 1 and type 2 deiodinases. Then, adult male Wistar rats were treated orally with bisphenol A (40 mg/kg b.w.) for 15 days and hepatic type 1 deiodinase and brown adipose tissue type 2 deiodinase activities and serum thyroid hormone concentrations were measured. In vivo bisphenol A treatment significantly reduced hepatic type 1 deiodinase activity but did not affect brown adipose tissue type 2 deiodinase activity. Serum T4 levels were higher in bisphenol A group, while T3 remained unchanged. T3/T4 ratio was decreased in rats treated with bisphenol A, reinforcing the idea that peripheral metabolism of thyroid hormone was affected by bisphenol A exposure. Therefore, our results suggest that bisphenol A can affect the metabolism of thyroid hormone thus disrupting thyroid signaling.


Endocrine ◽  
2018 ◽  
Vol 62 (2) ◽  
pp. 496-500 ◽  
Author(s):  
Prasanna Santhanam ◽  
Rexford S Ahima ◽  
Jennifer S Mammen ◽  
Luca Giovanella ◽  
Giorgio Treglia

Sign in / Sign up

Export Citation Format

Share Document