scholarly journals Reconstitution of Calcium-Regulated Parathyroid Hormone Secretion from Streptolysin-O-Permeabilized Parathyroid Cells by Guanosine 5′-O-(Thio)Triphosphate*

Endocrinology ◽  
1997 ◽  
Vol 138 (3) ◽  
pp. 1170-1179 ◽  
Author(s):  
Lisa M. Matovcik ◽  
Steven S. Rhee ◽  
Jean F. Schaefer ◽  
Barbara K. Kinder

Abstract Intracellular Ca2+ levels determine the amount of PTH secretion from parathyroid cells. Dissociated calf parathyroid cells were permeabilized with streptolysin-O (SLO) to provide an in vitro model system to examine Ca2+-dependent regulation of hormone secretion. PTH release from these cells was energy dependent and increased by cytosolic cofactors. Guanosine 5′-O-(thio)triphosphate (GTPγS) increased PTH secretion from SLO-permeabilized cells in a dose-dependent manner from 0.1–100 μm. In the absence of GTPγS there was no relationship between the ambient Ca2+ concentration and the rate of PTH secretion. However, in the presence of GTPγS, intracellular Ca2+ inhibited PTH secretion with an EC50 of approximately 0.1 μm, corresponding to physiological intracellular Ca2+ levels. Thus, the addition of GTPγS to SLO-permeabilized parathyroid cells reconstituted the inverse relationship between extracellular Ca2+ and PTH secretion that is observed in vivo and in intact cells. The data indicate that this effect is mediated at least in part by heterotrimeric guanosine triphosphatases. In addition, calcium/calmodulin-dependent protein kinase II appears to mediate low Ca2+-dependent PTH secretion from these cells.

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Hai-Jun Gao ◽  
Xu-Dong Sun ◽  
Yan-Ping Luo ◽  
Hua-Sheng Pang ◽  
Xing-Ming Ma ◽  
...  

Abstract Background Echinococcosis, which is caused by the larvae of cestodes of the genus Echinococcus, is a parasitic zoonosis that poses a serious threat to the health of humans and animals globally. Albendazole is the drug of choice for the treatment of echinococcosis, but it is difficult to meet clinical goals with this chemotherapy due to its low cure rate and associated side effects after its long-term use. Hence, novel anti-parasitic targets and effective treatment alternatives are urgently needed. A previous study showed that verapamil (Vepm) can suppress the growth of Echinococcus granulosus larvae; however, the mechanism of this effect remains unclear. The aim of the present study was to gain insight into the anti-echinococcal effect of Vepm on Echinococcus with a particular focus on the regulatory effect of Vepm on calcium/calmodulin-dependent protein kinase II (Ca2+/CaM-CaMKII) in infected mice. Methods The anti-echinococcal effects of Vepm on Echinococcus granulosus protoscoleces (PSC) in vitro and Echinococcus multilocularis metacestodes in infected mice were assessed. The morphological alterations in Echinococcus spp. induced by Vepm were observed by scanning electron microscopy (SEM), and the changes in calcium content in both the parasite and mouse serum and liver were measured by SEM-energy dispersive spectrometry, inductively coupled plasma mass spectrometry and alizarin red staining. Additionally, the changes in the protein and mRNA levels of CaM and CaMKII in infected mice, and in the mRNA levels of CaMKII in E. granulosus PSC, were evaluated after treatment with Vepm by immunohistochemistry and/or real-time quantitative polymerase chain reaction. Results In vitro, E. granulosus PSC could be killed by Vepm at a concentration of 0.5 μg/ml or higher within 8 days. Under these conditions, the ultrastructure of PSC was damaged, and this damage was accompanied by obvious calcium loss and downregulation of CaMKII mRNA expression. In vivo, the weight and the calcium content of E. multilocularis metacestodes from mice were reduced after treatment with 40 mg/kg Vepm, and an elevation of the calcium content in the sera and livers of infected mice was observed. In addition, downregulation of CaM and CaMKII protein and mRNA expression in the livers of mice infected with E. multilocularis metacestodes was found after treatment with Vepm. Conclusions Vepm exerted a parasiticidal effect against Echinococcus both in vitro and in vivo through downregulating the expression of Ca2+/CaM-CaMKII, which was over-activated by parasitic infection. The results suggest that Ca2+/CaM-CaMKII may be a novel drug target, and that Vepm is a potential anti-echinococcal drug for the future control of echinococcosis.


1982 ◽  
Vol 2 (10) ◽  
pp. 1187-1198 ◽  
Author(s):  
B S Schaffhausen ◽  
H Dorai ◽  
G Arakere ◽  
T L Benjamin

Middle T antigen of polyoma virus is associated principally with the plasma membrane. Comparison of the trypsin sensitivity of middle T in intact cells and "inside out" membrane preparations showed that middle T is oriented towards the inside of the cell. This was confirmed by labeling of middle T in permeabilized cells, but not in intact cells, using [gamma-32P]ATP. Middle T molecules active in the in vitro kinase reaction could be differentiated from the bulk (metabolically labeled) middle T based on resistance to trypsin treatment. The active fraction also behaved differently from the bulk when cell frameworks were prepared with Triton-containing buffers; whereas the bulk middle T was evenly distributed in the soluble and cell framework fractions, the kinase-active forms were largely associated with the framework. Middle T molecules labeled in vivo with 32PO4 were found largely in the framework fraction, like the molecules that show kinase activity in vitro. Experiments with ATP affinity reagents 8-azido-ATP and 2,3-dialdehyde ATP have failed to label the middle T antigen. However, 2,3-dialdehyde ATP could be used to inhibit the kinase reaction. This raises the question of whether middle T antigen possesses intrinsic kinase activity or, rather, associates with a cellular tyrosine kinase.


1998 ◽  
Vol 142 (6) ◽  
pp. 1519-1532 ◽  
Author(s):  
Yasmina Saoudi ◽  
Rati Fotedar ◽  
Ariane Abrieu ◽  
Marcel Dorée ◽  
Jürgen Wehland ◽  
...  

Microtubules in permeabilized cells are devoid of dynamic activity and are insensitive to depolymerizing drugs such as nocodazole. Using this model system we have established conditions for stepwise reconstitution of microtubule dynamics in permeabilized interphase cells when supplemented with various cell extracts. When permeabilized cells are supplemented with mammalian cell extracts in the presence of protein phosphatase inhibitors, microtubules become sensitive to nocodazole. Depolymerization induced by nocodazole proceeds from microtubule plus ends, whereas microtubule minus ends remain inactive. Such nocodazole-sensitive microtubules do not exhibit subunit turnover. By contrast, when permeabilized cells are supplemented with Xenopus egg extracts, microtubules actively turn over. This involves continuous creation of free microtubule minus ends through microtubule fragmentation. Newly created minus ends apparently serve as sites of microtubule depolymerization, while net microtubule polymerization occurs at microtubule plus ends. We provide evidence that similar microtubule fragmentation and minus end–directed disassembly occur at the whole-cell level in intact cells. These data suggest that microtubule dynamics resembling dynamics observed in vivo can be reconstituted in permeabilized cells. This model system should provide means for in vitro assays to identify molecules important in regulating microtubule dynamics. Furthermore, our data support recent work suggesting that microtubule treadmilling is an important mechanism of microtubule turnover.


1999 ◽  
Vol 342 (2) ◽  
pp. 369-377 ◽  
Author(s):  
Randi HOVLAND ◽  
Anne P. DØSKELAND ◽  
Thor S. EIKHOM ◽  
Bernard ROBAYE ◽  
Stein O. DØSKELAND

An elevated cAMP concentration results in growth arrest and protein synthesis-dependent apoptosis in the promyelocytic leukaemia cell line IPC-81. A comparison of two-dimensional gels of extracts from these cells labelled with [35S]methionine revealed that five distinct protein spots were induced by cAMP in a protein-synthesis-dependent manner. The spots seemed to result from the acidic shift of a precursor protein. The most abundant spot was phospho-actin. The spots induced by cAMP in intact cells were induced by cAMP-dependent protein kinase (cAPK) during the translation in vitro of mRNA from the leukaemia cells. The effect of cAPK was strictly co-translational, none of the spots being induced when cAPK was added after translation. This suggested that the protein spots arose by co-translational phosphorylation catalysed by cAPK. Two of the protein spots, phospho-actin and a protein with a molecular mass of 30 kDa and an isoelectric point of 4.5, were studied further with respect to expression. They were produced during the whole pre-apoptotic period, had cellular half-lives of several hours and were induced by the same concentrations of cAMP analogue that induced apoptosis. It is suggested that the accumulation of co-translationally modified proteins could be important for long-term cAMP signalling.


2007 ◽  
Vol 282 (38) ◽  
pp. 27685-27692 ◽  
Author(s):  
Inga Waldmann ◽  
Sarah Wälde ◽  
Ralph H. Kehlenbach

c-Jun and c-Fos are major components of the transcriptional complex AP-1. Here, we investigate the nuclear import pathway(s) of the transcription factor c-Jun. c-Jun bound specifically to the nuclear import receptors importin β, transportin, importin 5, importin 7, importin 9, and importin 13. In digitonin-permeabilized cells, importin β, transportin, importin 7, and importin 9 promoted efficient import of c-Jun into the nucleus. Importin α, by contrast, inhibited nuclear import of c-Jun in vitro. A single basic region preceding the leucine zipper of c-Jun functions as a nuclear localization signal (NLS) and was required for interaction with all tested import receptors. In vivo, nuclear import of a c-Jun reporter protein lacking the leucine zipper strictly depended on this NLS. In a leucine zipper-dependent manner, c-Jun with mutations in its NLS was still imported into the nucleus in a complex with endogenous leucine zipper proteins or, for example, with cotransfected c-Fos. Together, these results explain the highly efficient nuclear import of the transcription factor c-Jun.


2007 ◽  
Vol 292 (2) ◽  
pp. E413-E420 ◽  
Author(s):  
James A. H. Smith ◽  
Malcolm Collins ◽  
Liesl A. Grobler ◽  
Carrie J. Magee ◽  
Edward O. Ojuka

In vitro binding assays have indicated that the exercise-induced increase in muscle GLUT4 is preceded by increased binding of myocyte enhancer factor 2A (MEF2A) to its cis-element on the Glut4 promoter. Because in vivo binding conditions are often not adequately recreated in vitro, we measured the amount of MEF2A that was bound to the Glut4 promoter in rat triceps after an acute swimming exercise in vivo, using chromatin immunoprecipitation (ChIP) assays. Bound MEF2A was undetectable in nonexercised controls or at 24 h postexercise but was significantly elevated ∼6 h postexercise. Interestingly, the increase in bound MEF2A was preceded by an increase in autonomous activity of calcium/calmodulin-dependent protein kinase (CaMK) II in the same muscle. To determine if CaMK signaling mediates MEF2A/DNA associations in vivo, we performed ChIP assays on C2C12 myotubes expressing constitutively active (CA) or dominant negative (DN) CaMK IV proteins. We found that ∼75% more MEF2A was bound to the Glut4 promoter in CA compared with DN CaMK IV-expressing cells. GLUT4 protein increased ∼70% 24 h after exercise but was unchanged by overexpression of CA CaMK IV in myotubes. These results confirm that exercise increases the binding of MEF2A to the Glut4 promoter in vivo and provides evidence that CaMK signaling is involved in this interaction.


2002 ◽  
Vol 22 (10) ◽  
pp. 3237-3246 ◽  
Author(s):  
Amardeep S. Dhillon ◽  
Claire Pollock ◽  
Helge Steen ◽  
Peter E. Shaw ◽  
Harald Mischak ◽  
...  

ABSTRACT The Raf-1 kinase activates the ERK (extracellular-signal-regulated kinase) pathway. The cyclic AMP (cAMP)-dependent protein kinase (PKA) can inhibit Raf-1 by direct phosphorylation. We have mapped all cAMP-induced phosphorylation sites in Raf-1, showing that serines 43, 259, and 621 are phosphorylated by PKA in vitro and induced by cAMP in vivo. Serine 43 phosphorylation decreased the binding to Ras in serum-starved but not in mitogen-stimulated cells. However, the kinase activity of a RafS43A mutant was fully inhibited by PKA. Mutation of serine 259 increased the basal Raf-1 activity and rendered it largely resistant to inhibition by PKA. cAMP increased Raf-1 serine 259 phosphorylation in a PKA-dependent manner with kinetics that correlated with ERK deactivation. PKA also decreased Raf-1 serine 338 phosphorylation of Raf-1, previously shown to be required for Raf-1 activation. Serine 338 phosphorylation of a RafS259A mutant was unaffected by PKA. Using RafS259 mutants we also demonstrate that Raf-1 is the sole target for PKA inhibition of ERK and ERK-induced gene expression, and that Raf-1 inhibition is mediated mainly through serine 259 phosphorylation.


2003 ◽  
Vol 23 (11) ◽  
pp. 3909-3917 ◽  
Author(s):  
Nandita Nath ◽  
Rhonda R. McCartney ◽  
Martin C. Schmidt

ABSTRACT Members of the Snf1/AMP-activated protein kinase family are activated under conditions of nutrient stress by a distinct upstream kinase. Here we present evidence that the yeast Pak1 kinase functions as a Snf1-activating kinase. Pak1 associates with the Snf1 kinase in vivo, and the association is greatly enhanced under glucose-limiting conditions when Snf1 is active. Snf1 kinase complexes isolated from pak1Δ mutant strains show reduced specific activity in vitro, and affinity-purified Pak1 kinase is able to activate the Snf1-dependent phosphorylation of Mig1 in vitro. Purified Pak1 kinase promotes the phosphorylation of the Snf1 polypeptide on threonine 210 within the activation loop in vitro, and an increased dosage of the PAK1 gene causes increased Snf1 threonine 210 phosphorylation in vivo. Deletion of the PAK1 gene does not produce a Snf phenotype, suggesting that one or more additional protein kinases is able to activate Snf1 in vivo. However, deletion of the PAK1 gene suppresses many of the phenotypes associated with the deletion of the REG1 gene, providing genetic evidence that Pak1 activates Snf1 in vivo. The closest mammalian homologue of yeast Pak1 kinase, calcium-calmodulin-dependent protein kinase kinase beta, may play a similar role in mammalian nutrient stress signaling.


2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
Leslie Chávez-Galán ◽  
Dominique Vesin ◽  
Denis Martinvalet ◽  
Irene Garcia

Mycobacterium bovisBCG, the current vaccine against tuberculosis, is ingested by macrophages promoting the development of effector functions including cell death and microbicidal mechanisms. Despite accumulating reports onM. tuberculosis, mechanisms of BCG/macrophage interaction remain relatively undefined. In vivo, few bacilli are sufficient to establish a mycobacterial infection; however, in vitro studies systematically use high mycobacterium doses. In this study, we analyze macrophage/BCG interactions and microenvironment upon infection with low BCG doses and propose an in vitro model to study cell activation without affecting viability. We show that RAW macrophages infected with BCG at MOI 1 activated higher and sustained levels of proinflammatory cytokines and transcription factors while MOI 0.1 was more efficient for early stimulation of IL-1β, MCP-1, and KC. Both BCG infection doses induced iNOS and NO in a dose-dependent manner and maintained nuclear and mitochondrial structures. Microenvironment generated by MOI 1 induced macrophage proliferation but not MOI 0.1 infection. In conclusion, BCG infection at low dose is an efficient in vitro model to study macrophage/BCG interactions that maintains macrophage viability and mitochondrial structures. This represents a novel model that can be applied to BCG research fields including mycobacterial infections, cancer immunotherapy, and prevention of autoimmunity and allergies.


1982 ◽  
Vol 2 (10) ◽  
pp. 1187-1198 ◽  
Author(s):  
B S Schaffhausen ◽  
H Dorai ◽  
G Arakere ◽  
T L Benjamin

Middle T antigen of polyoma virus is associated principally with the plasma membrane. Comparison of the trypsin sensitivity of middle T in intact cells and "inside out" membrane preparations showed that middle T is oriented towards the inside of the cell. This was confirmed by labeling of middle T in permeabilized cells, but not in intact cells, using [gamma-32P]ATP. Middle T molecules active in the in vitro kinase reaction could be differentiated from the bulk (metabolically labeled) middle T based on resistance to trypsin treatment. The active fraction also behaved differently from the bulk when cell frameworks were prepared with Triton-containing buffers; whereas the bulk middle T was evenly distributed in the soluble and cell framework fractions, the kinase-active forms were largely associated with the framework. Middle T molecules labeled in vivo with 32PO4 were found largely in the framework fraction, like the molecules that show kinase activity in vitro. Experiments with ATP affinity reagents 8-azido-ATP and 2,3-dialdehyde ATP have failed to label the middle T antigen. However, 2,3-dialdehyde ATP could be used to inhibit the kinase reaction. This raises the question of whether middle T antigen possesses intrinsic kinase activity or, rather, associates with a cellular tyrosine kinase.


Sign in / Sign up

Export Citation Format

Share Document