scholarly journals Role of Progesterone Receptor Activation in Pituitary Adenylate Cyclase Activating Polypeptide Gene Expression in Rat Ovary1

Endocrinology ◽  
1999 ◽  
Vol 140 (11) ◽  
pp. 5185-5194 ◽  
Author(s):  
Chemyong Ko ◽  
Yong-Ho In ◽  
Ok-Kyong Park-Sarge
2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Rubina Marzagalli ◽  
Soraya Scuderi ◽  
Filippo Drago ◽  
James A. Waschek ◽  
Alessandro Castorina

Enduring diabetes increases the probability of developing secondary damage to numerous systems, and these complications represent a cause of morbidity and mortality. Establishing the causes of diabetes remains the key step to eradicate the disease, but prevention as well as finding therapies to ameliorate some of the major diabetic complications is an equally important step to increase life expectancy and quality for the millions of individuals already affected by the disease or who are likely to develop it before cures become routinely available. In this review, we will firstly summarize some of the major complications of diabetes, including endothelial and pancreatic islets dysfunction, retinopathy, and nephropathy, and then discuss the emerging roles exerted by the neuropeptide pituitary adenylate cyclase activating polypeptide (PACAP) to counteract these ranges of pathologies that are precipitated by the prolonged hyperglycemic state. Finally, we will describe the main signalling routes activated by the peptide and propose possible future directions to focus on developing more effective peptide-based therapies to treat the major complications associated with longstanding diabetes.


Endocrinology ◽  
2003 ◽  
Vol 144 (6) ◽  
pp. 2368-2379 ◽  
Author(s):  
Luca Grumolato ◽  
Abdel G. Elkahloun ◽  
Hafida Ghzili ◽  
David Alexandre ◽  
Cédric Coulouarn ◽  
...  

Abstract Pituitary adenylate cyclase-activating polypeptide (PACAP) exerts trophic effects on several neuronal, neuroendocrine, and endocrine cells. To gain insight into the pattern of the transcriptional modifications induced by PACAP during cell differentiation, we studied the effects of this neuropeptide on rat pheochromocytoma PC12 cells. We first analyzed the transcriptome of PC12 cells in comparison to that of terminally differentiated rat adrenomedullary chromaffin cells, using a high-density microarray, to identify genes associated with the proliferative phenotype that are possible targets of PACAP during differentiation of sympathoadrenal normal and tumoral cells. We then studied global gene expression in PC12 cells after 48 h of exposure to PACAP, using both cDNA microarray and suppression subtractive hybridization technologies. These complementary approaches resulted in the identification of 75 up-regulated and 70 down-regulated genes in PACAP-treated PC12 cells. Among the genes whose expression is modified in differentiated cells, a vast majority are involved in cell proliferation, survival, and adhesion/motility. Expression changes of most of these genes have been associated with progression of several neoplasms. A kinetic study of the effects of PACAP on some of the identified genes showed that the neuropeptide likely exerts early as well as late actions to achieve the gene expression program necessary for cell differentiation. In conclusion, the results of the present study underscore the pleiotropic role of PACAP in cell differentiation and provide important information on novel targets that could mediate the effects of this neuropeptide in normal and tumoral neuroendocrine cells.


Sign in / Sign up

Export Citation Format

Share Document