scholarly journals In Vivo Evidence for Stimulation of Placental, Myometrial, and Endometrial Prostaglandin G/H Synthase 2 by Fetal Cortisol Replacement after Fetal Adrenalectomy

Endocrinology ◽  
2001 ◽  
Vol 142 (9) ◽  
pp. 3857-3864 ◽  
Author(s):  
W. X. Wu ◽  
X. H. Ma ◽  
N. Unno ◽  
P. W. Nathanielsz

Abstract Fetal glucocorticoid-induced premature labor in sheep is an established model of premature labor. However, the pathways by which fetal cortisol triggers subsequent maternal endocrine changes, including enhanced PG synthesis, leading to labor are unclear. The current study was undertaken to determine whether cortisol administration to adrenalectomized fetuses to clamp fetal cortisol at levels present early in the late gestation rise, which are inadequate to produce labor, can stimulate placental, myometrial, and endometrial prostaglandin G/H synthase 2 mRNA and protein expression. At 109–113 d gestation, fetal sheep adrenals were removed (n = 8), or sham surgery was performed (n = 4). From d 6 postadrenalectomy, maternal and fetal plasma cortisol were determined daily by RIA. From d 7 postadrenalectomy, cortisol (4 μg/min) was continuously infused iv to four adrenalectomized fetuses. Endometrium, myometrium, and placentome were collected from all three groups of ewes (n = 4 for each group), and total RNA and proteins were extracted from each intrauterine tissue and analyzed by Northern and Western for prostaglandin G/H synthase 2 mRNA and protein. P45017α hydroxylase mRNA was analyzed in the placentome by Northern blot. Data were analyzed by ANOVA. Plasma cortisol levels remained low in sham-operated and adrenalectomized fetus, whereas during cortisol infusion to adrenalectomized and cortisol-treated fetuses, plasma cortisol increased to the late gestation level. After adrenalectomy, prostaglandin G/H synthase 2 did not change in any tissue studied. Fetal plasma cortisol replacement to late gestation levels increased prostaglandin G/H synthase 2 to levels similar to term levels in all three tissues. PGHS1 mRNA and protein did not change in any group studied. There was a minimal increase in P45017α hydroxylase mRNA in the placentome in the adrenalectomized and cortisol-treated group. Cortisol- induced labor further increased P45017α hydroxylase mRNA in the placentome compared with that in adrenalectomized and cortisol-treated animals. These data provide evidence for in vivo cortisol up-regulation of prostaglandin G/H synthase 2, but not PGHS1, in late gestation in the ovine placentome, myometrium, and endometrium. As stimulation of the estrogen biosynthetic pathway was minimal in the adrenalectomized and cortisol-treated group, these data provide support for the concept that cortisol has a direct effect on prostaglandin G/H synthase 2 expression in addition to its classical indirect pathway on prostaglandin G/H synthase 2 as a result of estrogen synthesis.

1999 ◽  
Vol 276 (1) ◽  
pp. H248-H256 ◽  
Author(s):  
Nobuya Unno ◽  
Chi H. Wong ◽  
Susan L. Jenkins ◽  
Richard A. Wentworth ◽  
Xiu-Ying Ding ◽  
...  

Ontogenic changes in baseline and 24-h rhythms of fetal arterial blood pressure (FABP) and heart rate (FHR) and their regulation by the fetal adrenal were studied in 18 fetal sheep chronically instrumented at 109–114 days gestation (GA). In the long-term study, FABP and FHR were continuously recorded from 120 days GA to spontaneous term labor (>145 days GA) in five animals. Peak times (PT) and amplitudes (Amp) of cosinor analysis were compared at 120–126, 127–133, and 134–140 days GA. Consistent, significant linear increases in FABP and linear decreases in FHR were observed in all fetuses. Significant 24-h rhythms in FABP and FHR were observed during all the time windows. In the adrenalectomy study, to test the hypothesis that fetal cortisol plays a key role in cardiovascular maturation, fetal adrenals were removed in eight animals (ADX); sham fetal adrenalectomy was performed on five animals (Con). Cortisol (4 μg/min) was infused intravenously in four ADX fetuses from day 7postsurgery for 7 days (ADX+F). No significant changes in PT and Amp in FABP and FHR were observed. Plasma cortisol levels remained low in Con and ADX fetuses (<4.9 ng/ml). Cortisol infusion increased fetal plasma cortisol to 22.3 ± 3.2 ng/ml (mean ± SE) on day 13 in ADX+F fetuses. FABP increased in control and ADX+F but not ADX fetuses; FHR decreased in control and ADX but rose in ADX+F fetuses. These results suggest that, in chronically instrumented fetal sheep at late gestation, 1) increases in FABP and decreases in FHR are maintained consistently from 120 to 140 days GA, with distinct 24-h rhythms, the PT and Amp of which remain unchanged, and 2) the physiological increase in FABP is dependent on the fetal adrenal; bilateral removal of the fetal adrenals does not prevent the ability of cortisol to produce a sustained increase in FABP.


2002 ◽  
Vol 283 (2) ◽  
pp. R460-R467 ◽  
Author(s):  
Jeffrey L. Segar ◽  
Timothy Van Natta ◽  
Oliva J. Smith

Studies were performed to test the hypothesis that the absence of adrenal glucocorticoids late in gestation alters sympathetic and baroreflex responses before and immediately after birth. Fetal sheep at 130–131 days gestation (term 145 days) were subjected to bilateral adrenalectomy before the normal prepartum increase in plasma cortisol levels. One group of fetuses ( n = 5) received physiological cortisol replacement with a continuous infusion of hydrocortisone (2 mg · day−1 · kg−1 for 10 days), whereas the other group received 0.9% NaCl vehicle ( n = 5). All animals underwent a second surgery 48 h before the study for placement of a renal nerve recording electrode. Heart rate (HR), mean arterial blood pressure (MABP), renal sympathetic nerve activity (RSNA), and baroreflex control of HR and RSNA were studied before and after cesarean section delivery. At the time of study (140–141 days gestation), fetal plasma cortisol concentration was undetectable in adrenalectomized (ADX) fetuses and 58 ± 9 ng/ml in animals receiving cortisol replacement (ADX + F). Fetal and newborn MABP was significantly greater in ADX + F relative to ADX animals. One hour after delivery, MABP increased 13 ± 3 mmHg and RSNA increased 91 ± 12% above fetal values in ADX + F (both P < 0.05) but remained unchanged in ADX lambs. The midpoint pressures of the fetal HR and RSNA baroreflex function curves were significantly greater in ADX + F (54 ± 3 and 56 ± 3 mmHg for HR and RSNA curves, respectively) than ADX fetuses (45 ± 2 and 46 ± 3 mmHg). After delivery, the baroreflex curves reset toward higher pressure in ADX + F but not ADX lambs. These results suggest that adrenal glucocorticoids contribute to cardiovascular regulation in the late-gestation fetus and newborn by modulating arterial baroreflex function and sympathetic activity.


Endocrinology ◽  
2003 ◽  
Vol 144 (2) ◽  
pp. 599-604 ◽  
Author(s):  
Charles E. Wood ◽  
Kelly E. Gridley ◽  
Maureen Keller-Wood

In sheep, the fetal hypothalamus-pituitary-adrenal axis plays a central role in the initiation of parturition. We have reported that estradiol dramatically increases the activity of the fetal hypothalamus-pituitary-adrenal (HPA) axis. Sulfoconjugated estrogens are known to circulate in high concentrations in fetal plasma. We have reported the expression and abundant activity of steroid sulfatase within the fetal brain regions important for HPA axis control, and we have proposed that sulfoconjugated estrogens in fetal plasma are deconjugated (and therefore converted to a biologically active form) in fetal brain. The present study was designed to test the hypothesis that exogenous estradiol-3-sulfate stimulates HPA axis activity in late gestation fetal sheep and that it is concentrated by fetal brain tissue. We infused estradiol-3-sulfate iv into fetal sheep (125–135 d gestation; term = 147 d) at rates of 0, 0.25, and 1.0 mg/d for 5 d and performed serial sampling of fetal blood before and at the end of the infusion periods. Infusions increased fetal plasma estradiol-3-sulfate concentrations and produced dose-related increases in HPA axis activity. The action of the steroid on the fetal brain was also demonstrated as dose-related increases in the abundance of Fos in fetal cerebellum. In a second study we measured the uptake of sulfoconjugated and unconjugated estrogen (estrone-3sulfate and estrone, respectively) into the fetal brain (124–128 d gestation) in vivo. Both forms of estrogen were concentrated in fetal brain, with the uptake of estrone greater than that of estrone-3-sulfate. We conclude that sulfoconjugated estrogens augment fetal HPA axis activity and that they can cross the fetal blood-brain barrier. We propose that in late gestation the large circulating pool of sulfoconjugated estrogen is a biologically important source of active hormone that might play a role in the timing of parturition in sheep.


2009 ◽  
Vol 296 (2) ◽  
pp. E300-E304 ◽  
Author(s):  
Luke C. Carey ◽  
Stephen B. Tatter ◽  
James C. Rose

Corticotrophs in the fetal sheep become increasingly responsive to arginine vasopressin (AVP) in late gestation. We previously reported that this may be due in part to corresponding increases in signal transduction (inositol 1,4,5-trisphosphate, IP3). These ontogenic changes are prevented by hypothalamo-pituitary disconnection (HPD), which also prevents fetal plasma cortisol concentrations from increasing in late gestation. This led us to hypothesize that cortisol is involved in mediating the changes in pituitary responsiveness. HPD was performed on fetal sheep at 120 days gestational age (dGA). Half of the HPD fetuses were infused with cortisol for 3 days beginning at 135–137 dGA (HPD+C). The remaining HPD fetuses and a group of sham-operated control fetuses were infused with saline. Pituitary cells were isolated and cultured. After 48 h, a subset of cells was stimulated with 100 nM AVP for 2 h, and the medium was collected for ACTH analysis. Another subset of cells was stimulated with 100 nM AVP for 30 min, and the formation of IP3 was determined. Plasma cortisol concentrations increased rapidly within the first 6 h after infusion (5.2 ± 1.9 to 29.7 ± 4.9 ng/ml) but did not increase thereafter. Cells from HPD+C and sham-operated fetuses secreted significantly more ACTH than those from HPD fetuses (% increase from control: 33.0 ± 8.8%, 47.9 ± 10.6%, and 11.9 ± 2.4%, respectively). IP3 formation was significantly increased in cells from HPD+C and sham-operated compared with HPD fetuses (% increase from control: 17.7 ± 4.4%, 18.9 ± 4.3%, and 4.6 ± 1.5%, respectively). These findings support the idea that cortisol plays a role in mediating the increase in pituitary responsiveness to AVP in the late-gestation fetal sheep.


1995 ◽  
Vol 73 (11) ◽  
pp. 1568-1573 ◽  
Author(s):  
Treena M. Jeffray ◽  
Edward T. M. Berdusco ◽  
John R. G. Challis ◽  
Megan Wallace ◽  
Abigail Fowden

The effects of incremental cortisol infusion or fetal adrenalectomy on plasma corticosteroid-binding capacity (CBC) were examined in sheep fetuses during late gestation (term ≈ 150 days). Cortisol, infused from day 120 at 1.5 mg/day for the first 3 days, 2.5 mg/day for the next 5 days, and 3.5 mg/day for the final 2 days, stimulated a significant rise in plasma CBC and immunoreactive corticosteroid binding globulin (CBG). There was a significant positive correlation between individual values for total plasma cortisol concentrations and CBC values. In contrast, fetal adrenalectomy at day 115 prevented the rise in plasma CBC found in intact fetuses at term. These experiments show that exogenous cortisol, given in a manner that mimics the prepartum rise in fetal plasma cortisol, stimulates CBG biosynthesis, whereas abolition of the cortisol rise prevents the increase in CBG. The study provides strong support for the proposal that the prepartum increase in CBG biosynthesis in fetal sheep occurs in response to the progressive rise in adrenal cortisol output by the fetus towards term.Key words: corticosteroid binding globulin, cortisol, adrenalectomy, fetus, sheep.


2002 ◽  
Vol 172 (3) ◽  
pp. 527-534 ◽  
Author(s):  
KA Clarke ◽  
JW Ward ◽  
AJ Forhead ◽  
DA Giussani ◽  
AL Fowden

The effect of fetal cortisol on the activity of the type 2 isoform of the enzyme, 11 beta-hydroxysteroid dehydrogenase (11 beta-HSD2), was examined in ovine placenta and fetal kidney by measuring tissue 11 beta-HSD2 activity during late gestation when endogenous fetal cortisol levels rise and after exogenous cortisol administration to immature fetuses before the prepartum cortisol surge. Placental 11 beta-HSD2 activity decreased between 128-132 days and term (approximately 145 days of gestation) in association with the normal prepartum increase in fetal plasma cortisol. Raising fetal cortisol levels to prepartum values in the immature fetus at 128--132 days of gestation reduced placental 11 beta-HSD2 activity to term values. In contrast, 11 beta-HSD2 activity in the fetal renal cortex was unaffected by gestational age or cortisol infusion. When all the data were combined, there was an inverse correlation between the log fetal plasma cortisol level at delivery and placental 11 beta-HSD2 activity, expressed both on a weight-specific basis and per mg placental protein. Fetal cortisol therefore appears to be a physiological regulator of placental, but not renal, 11 beta-HSD2 activity in fetal sheep during late gestation. These findings have important implications, not only for glucocorticoid exposure in utero, but also for the local actions of cortisol within the placental tissues that are involved in initiating parturition in the sheep.


2003 ◽  
Vol 176 (1) ◽  
pp. 23-30 ◽  
Author(s):  
A Mostyn ◽  
S Pearce ◽  
H Budge ◽  
M Elmes ◽  
AJ Forhead ◽  
...  

The present study examined the extent to which the late gestation rise in fetal plasma cortisol influenced adipose tIssue development in the fetus. The effect of cortisol on the abundance of adipose tIssue mitochondrial proteins on both the inner (i.e. uncoupling protein (UCP)1) and outer (i.e. voltage-dependent anion channel (VDAC)) mitochondrial membrane, together with the long and short forms of the prolactin receptor (PRLR) protein and leptin mRNA was determined. Perirenal adipose tIssue was sampled from ovine fetuses to which (i) cortisol (2-3 mg/day for 5 days) or saline was infused up to 127-130 days of gestation, and (ii) adrenalectomised and intact controls at between 142 and 145 days of gestation (term=148 days). UCP1 protein abundance was significantly lower in adrenalectomised fetuses compared with age-matched controls, and UCP1 was increased by cortisol infusion and with gestational age. Adrenalectomy reduced the concentration of the long form of PRLR, although this effect was only significant for the highest molecular weight isoform. In contrast, neither the short form of PRLR, VDAC protein abundance or leptin mRNA expression was significantly affected by gestational age or cortisol status. Fetal plasma triiodothyronine concentrations were increased by cortisol and with gestational age, an affect abolished by adrenalectomy. When all treatment groups were combined, both plasma cortisol and triiodothyronine concentrations were positively correlated with UCP1 protein abundance. In conclusion, an intact adrenal is necessary for the late gestation rise in UCP1 protein abundance but cortisol does not appear to have a major stimulatory role in promoting leptin expression in fetal adipose tIssue. It remains to be established whether effects on UCP1 protein are directly regulated by cortisol alone or mediated by other anabolic fetal hormones such as triiodothyronine.


2015 ◽  
Vol 308 (4) ◽  
pp. E306-E314 ◽  
Author(s):  
Satya S. Houin ◽  
Paul J. Rozance ◽  
Laura D. Brown ◽  
William W. Hay ◽  
Randall B. Wilkening ◽  
...  

Reduced fetal glucose supply, induced experimentally or as a result of placental insufficiency, produces an early activation of fetal glucose production. The mechanisms and substrates used to fuel this increased glucose production rate remain unknown. We hypothesized that in response to hypoglycemia, induced experimentally with maternal insulin infusion, the fetal liver would increase uptake of lactate and amino acids (AA), which would combine with hormonal signals to support hepatic glucose production. To test this hypothesis, metabolic studies were done in six late gestation fetal sheep to measure hepatic glucose and substrate flux before (basal) and after [days (d)1 and 4] the start of hypoglycemia. Maternal and fetal glucose concentrations decreased by 50% on d1 and d4 ( P < 0.05). The liver transitioned from net glucose uptake (basal, 5.1 ± 1.5 μmol/min) to output by d4 (2.8 ± 1.4 μmol/min; P < 0.05 vs. basal). The [U-13C]glucose tracer molar percent excess ratio across the liver decreased over the same period (basal: 0.98 ± 0.01, vs. d4: 0.89 ± 0.01, P < 0.05). Total hepatic AA uptake, but not lactate or pyruvate uptake, increased by threefold on d1 ( P < 0.05) and remained elevated throughout the study. This AA uptake was driven largely by decreased glutamate output and increased glycine uptake. Fetal plasma concentrations of insulin were 50% lower, while cortisol and glucagon concentrations increased 56 and 86% during hypoglycemia ( P < 0.05 for basal vs. d4). Thus increased hepatic AA uptake, rather than pyruvate or lactate uptake, and decreased fetal plasma insulin and increased cortisol and glucagon concentrations occur simultaneously with increased fetal hepatic glucose output in response to fetal hypoglycemia.


1992 ◽  
Vol 263 (3) ◽  
pp. R738-R740 ◽  
Author(s):  
M. Morris ◽  
M. Castro ◽  
J. C. Rose

Oxytocin (OT) prohormone processing was studied in fetal sheep. Using specific antisera that recognize the amidated and the COOH-terminal extended forms of OT, we measured arterial and venous levels of the OT peptides in fetal sheep plasma at 94 and 138 days of gestation. Plasma levels of the COOH-terminal extended forms, OT-X, were highest early in development, 35.7 +/- 9.8 vs. 14.3 +/- 5.7 pg/ml (94 vs. 138 days). The ratio of the plasma peptides, OT-X to OT, was higher in the young fetus (35 +/- 11.6 vs. 3.1 +/- 1.3, 94 vs. 138 days). There were also developmental changes in the umbilical artery-umbilical vein differences, with positive values noted in late gestation. These results demonstrate that the changes in the processing of the OT precursor that occur during fetal development are reflected by alterations in the relative amounts of prohormone and amidated hormone found in fetal plasma.


1996 ◽  
Vol 80 (1) ◽  
pp. 166-175 ◽  
Author(s):  
S. A. Hollingworth ◽  
S. A. Jones ◽  
S. L. Adamson

We investigated the hypothesis that the precipitous decrease in prostaglandin E2 (PGE2), a potent inhibitor of fetal breathing, from high plasma concentrations during labor causes a rebound stimulation of breathing without newborn concentrations falling below prelabor fetal values. Fetal plasma PGE2 concentration was gradually increased from 384 +/- 82 (SE) pg/ml in 2-h steps [0 (baseline), 1.5, 3, and 6 micrograms/min] to labor levels (1,230 +/- 381 pg/ml at 6 micrograms/min) and then was maintained for 24 h (n = 9). PGE2 at 1.5 micrograms/min significantly decreased breathing incidence [from 42 +/- 4 (baseline) to 14 +/- 4%] and breath amplitude (from 2.1 +/- 0.5 to 1.5 +/- 0.2 arbitrary units) and increased breath-to-breath interval (from 1.16 +/- 0.07 to 1.56 +/- 0.06 s). No further dose-related changes were observed. During the first 2 h after PGE2 infusion was stopped, PGE2 concentration returned to basal (352 +/- 64 pg/ml) but breathing incidence and amplitude were significantly higher (74 +/- 8% and 2.4 +/- 0.3 arbitrary units, respectively) and breath-to-breath interval was significantly lower (0.95 +/- 0.10 s) than were basal levels. Changes arose within approximately 15 min and were maintained for at least 4 h. Breathing did not change significantly in the saline-treated group (n = 7). Results suggest that the rapid decrease in plasma PGE2 concentration at birth promotes the onset of breathing.


Sign in / Sign up

Export Citation Format

Share Document