scholarly journals Complex 5′ Genomic Structure of the Human Prolactin Receptor: Multiple Alternative Exons 1 and Promoter Utilization

Endocrinology ◽  
2002 ◽  
Vol 143 (6) ◽  
pp. 2139-2142 ◽  
Author(s):  
Zhang-Zhi Hu ◽  
Li Zhuang ◽  
Jianping Meng ◽  
Chon-Hwa Tsai-Morris ◽  
Maria L. Dufau

Abstract Transcription of the prolactin receptor (PRLR) is under the control of multiple promoters. Following the recent demonstration of the human non-coding exon 1, hE1N (hE1N1) and the generic exon 1 hE13, we have identified their promoters and characterized four other novel human exons 1 (hE1N2–5) that are alternatively spliced to a common non-coding exon 2 in human tissues and breast cancer cells. Genomic regions containing these exons, and 5′-flanking and intronic sequences, were determined and their order was established in chromosome 5p14-13. Promoters utilized in the transcription of previously characterized PRLR exons 1 species hE13 (hPII) and hE1N1 (hPN1) were found to employ distinct mechanisms for controlling hPRLR transcription. hPIII requires C/EBPβ and Sp1/Sp3 for basal transcriptional activity, while hPN1 activity is conferred by domains containing an Ets element and an NR half-site. The complex promoter control system that governs transcription of the hPRLR in multiple tissues is of relevance for studies on the regulation of PRLR expression in physiological and pathological states.

1990 ◽  
Vol 10 (5) ◽  
pp. 2133-2144 ◽  
Author(s):  
M E Gallego ◽  
B Nadal-Ginard

The mechanisms involved in the selective joining of appropriate 5' and 3' splice sites are still poorly understood in both constitutive and alternatively spliced genes. With two promoters associated with different exons, the myosin light-chain 1/3 gene generates two pre-mRNAs that also differ by the use of a pair of internal exons, 3 and 4, that are spliced in a mutually exclusive fashion. When the promoter upstream from exon 1 is used, only exon 4 is included. If the promoter upstream from exon 2 is used, only exon 3 is included. In an attempt to understand the molecular basis for the mutually exclusive behavior of these two exons and the basis of their specific selection, a number of minigene constructs containing exons 3 and 4 were tested in a variety of homologous or heterologous cis and trans environments. The results demonstrate that the mutually exclusive behavior of myosin light-chain exons 3 and 4 and selection between the two exons are cis regulated and are affected by the nature of the flanking sequences. Both exons competed for the common flanking 5' and 3' splice sites. Flanking exons were found that favored inclusion into mature mRNA of exon 3, exon 4, both, or neither, suggesting a specific cooperative interaction between certain 5' and 3' splice sites. Thus, alternative splicing of myosin light-chain 1/3 pre-mRNAs is regulated in cis by a hierarchy of compatibilities between pairs of 5' and 3' splice sites.


1990 ◽  
Vol 10 (10) ◽  
pp. 5271-5278 ◽  
Author(s):  
I Mineo ◽  
P R Clarke ◽  
R L Sabina ◽  
E W Holmes

AMP deaminase (AMPD) is a central enzyme in eucaryotic energy metabolism, and tissue-specific as well as stage-specific isoforms are found in many vertebrates. This study demonstrates the AMPD1 gene product in rat is alternatively spliced. The second exon, a 12-base miniexon, was found to be excluded or included in a tissue-specific and stage-specific pattern. This example of cassette splicing utilizes a unique pathway through an RNA intermediate that generates an alternative 5' splice donor site at the point where exon 2 is ligated to exon 1. In the analogous intermediate of human AMPD1, the potential 5' splice donor site created at the boundary of exon 1 and exon 2 was a poor substrate for splicing because of differences in exon 2 sequences, and human AMPD1 was not alternatively spliced. These results demonstrate that in some cases alternative splicing may proceed through an RNA intermediate that generates an alternative splice donor site not present in the primary transcript. Discrimination between alternative 5' splice donor sites in the RNA intermediate of AMPD1 is apparently controlled by tissue-specific and stage-specific signals.


2003 ◽  
Vol 77 (23) ◽  
pp. 12729-12741 ◽  
Author(s):  
Yan Su ◽  
Richard Adair ◽  
Candice N. Davis ◽  
Nancy L. DiFronzo ◽  
Anamaris M. Colberg-Poley

ABSTRACT The human cytomegalovirus (HCMV) UL36-38 immediate early (IE) locus encodes proteins required for its growth. The UL37 promoter drives production of an unspliced and several alternatively spliced RNAs. The UL37 exon 1 (UL37x1) unspliced RNA is abundant from IE to late times of HCMV infection, whereas the UL37 spliced RNAs are markedly less abundant. Production of the UL37x1 unspliced RNA requires polyadenylation (PA) at nucleotide 50998, which lies within intron 1, upstream of the UL37 exon 2 (UL37x2) acceptor. The physical proximity of its cis elements suggests steric hindrance between PA and splicing machineries for UL37 pre-mRNA. To test this possibility, we generated site-specific mutants in Target 1 PA and RNA splicing cis elements and compared the PA and splicing efficiencies of mutant RNAs with those of wild-type RNA. The mutually exclusive processing events of UL37x1 PA and UL37x1-UL37x2 splicing have been accurately recapitulated in transfected permissive human fibroblasts (HFFs) expressing a Target 1 minigene RNA, which contains the required splicing and PA cis elements. Two mutants in the invariant PA signal dramatically decreased UL37x1 PA as expected and, concomitantly, increased the efficiency of UL37x1-UL37x2 RNA splicing. Consistent with these results, changes to consensus UL37x1 donor and UL37x2 acceptor sites increased the efficiency of UL37x1-UL37x2 RNA splicing but decreased the efficiency of UL37x1 PA. Moreover, HCMV infection of HFFs increased the abundance of the PA cleavage stimulatory factor CstF-64, the potent splicing suppressor PTB, and the hypophosphorylated form of the splicing factor SF2 at 4 h postinfection. Induction of these factors further favors production of the UL37x1 unspliced RNA over that of the spliced RNAs. Taken together, these results suggest that there is a convergence in UL37 RNA regulation by cis elements and cellular proteins which favors production of the UL37x1 unspliced RNA during HCMV infection at the posttranscriptional level.


1990 ◽  
Vol 10 (5) ◽  
pp. 2133-2144
Author(s):  
M E Gallego ◽  
B Nadal-Ginard

The mechanisms involved in the selective joining of appropriate 5' and 3' splice sites are still poorly understood in both constitutive and alternatively spliced genes. With two promoters associated with different exons, the myosin light-chain 1/3 gene generates two pre-mRNAs that also differ by the use of a pair of internal exons, 3 and 4, that are spliced in a mutually exclusive fashion. When the promoter upstream from exon 1 is used, only exon 4 is included. If the promoter upstream from exon 2 is used, only exon 3 is included. In an attempt to understand the molecular basis for the mutually exclusive behavior of these two exons and the basis of their specific selection, a number of minigene constructs containing exons 3 and 4 were tested in a variety of homologous or heterologous cis and trans environments. The results demonstrate that the mutually exclusive behavior of myosin light-chain exons 3 and 4 and selection between the two exons are cis regulated and are affected by the nature of the flanking sequences. Both exons competed for the common flanking 5' and 3' splice sites. Flanking exons were found that favored inclusion into mature mRNA of exon 3, exon 4, both, or neither, suggesting a specific cooperative interaction between certain 5' and 3' splice sites. Thus, alternative splicing of myosin light-chain 1/3 pre-mRNAs is regulated in cis by a hierarchy of compatibilities between pairs of 5' and 3' splice sites.


1990 ◽  
Vol 10 (10) ◽  
pp. 5271-5278
Author(s):  
I Mineo ◽  
P R Clarke ◽  
R L Sabina ◽  
E W Holmes

AMP deaminase (AMPD) is a central enzyme in eucaryotic energy metabolism, and tissue-specific as well as stage-specific isoforms are found in many vertebrates. This study demonstrates the AMPD1 gene product in rat is alternatively spliced. The second exon, a 12-base miniexon, was found to be excluded or included in a tissue-specific and stage-specific pattern. This example of cassette splicing utilizes a unique pathway through an RNA intermediate that generates an alternative 5' splice donor site at the point where exon 2 is ligated to exon 1. In the analogous intermediate of human AMPD1, the potential 5' splice donor site created at the boundary of exon 1 and exon 2 was a poor substrate for splicing because of differences in exon 2 sequences, and human AMPD1 was not alternatively spliced. These results demonstrate that in some cases alternative splicing may proceed through an RNA intermediate that generates an alternative splice donor site not present in the primary transcript. Discrimination between alternative 5' splice donor sites in the RNA intermediate of AMPD1 is apparently controlled by tissue-specific and stage-specific signals.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 888
Author(s):  
Mohammed A. Ibrahim Al-Obaide ◽  
Kalkunte S. Srivenugopal

Background: The therapeutically important DNA repair gene O6-methylguanine DNA methyltransferase (MGMT) is silenced by promoter methylation in human brain cancers. The co-players/regulators associated with this process and the subsequent progression of MGMT gene transcription beyond the non-coding exon 1 are unknown. As a follow-up to our recent finding of a predicted second promoter mapped proximal to the exon 2 [Int. J. Mol. Sci.2021, 22(5), 2492], we addressed its significance in MGMT transcription. Methods: RT-PCR, RT q-PCR, and nuclear run-on transcription assays were performed to compare and contrast the transcription rates of exon 1 and exon 2 of the MGMT gene in glioblastoma cells. Results: Bioinformatic characterization of the predicted MGMT exon 2 promoter showed several consensus TATA box and INR motifs and the absence of CpG islands in contrast to the established TATA-less, CpG-rich, and GAF-bindable exon 1 promoter. RT-PCR showed very weak MGMT-E1 expression in MGMT-proficient SF188 and T98G GBM cells, compared to active transcription of MGMT-E2. In the MGMT-deficient SNB-19 cells, the expression of both exons remained weak. The RT q-PCR revealed that MGMT-E2 and MGMT-E5 expression was about 80- to 175-fold higher than that of E1 in SF188 and T98G cells. Nuclear run-on transcription assays using bromo-uridine immunocapture followed by RT q-PCR confirmed the exceptionally lower and higher transcription rates for MGMT-E1 and MGMT-E2, respectively. Conclusions: The results provide the first evidence for transcriptional pausing at the promoter 1- and non-coding exon 1 junction of the human MGMT gene and its activation/elongation through the protein-coding exons 2 through 5, possibly mediated by a second promoter. The findings offer novel insight into the regulation of MGMT transcription in glioma and other cancer types.


Genes ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 29
Author(s):  
Lilia González-Cerón ◽  
José Cebrián-Carmona ◽  
Concepción M. Mesa-Valle ◽  
Federico García-Maroto ◽  
Frida Santillán-Valenzuela ◽  
...  

Plasmodium vivax Cysteine-Rich Protective Antigen (CyRPA) is a merozoite protein participating in the parasite invasion of human reticulocytes. During natural P. vivax infection, antibody responses against PvCyRPA have been detected. In children, low anti-CyRPA antibody titers correlated with clinical protection, which suggests this protein as a potential vaccine candidate. This work analyzed the genetic and amino acid diversity of pvcyrpa in Mexican and global parasites. Consensus coding sequences of pvcyrpa were obtained from seven isolates. Other sequences were extracted from a repository. Maximum likelihood phylogenetic trees, genetic diversity parameters, linkage disequilibrium (LD), and neutrality tests were analyzed, and the potential amino acid polymorphism participation in B-cell epitopes was investigated. In 22 sequences from Southern Mexico, two synonymous and 21 nonsynonymous mutations defined nine private haplotypes. These parasites had the highest LD-R2 index and the lowest nucleotide diversity compared to isolates from South America or Asia. The nucleotide diversity and Tajima’s D values varied across the coding gene. The exon-1 sequence had greater diversity and Rm values than those of exon-2. Exon-1 had significant positive values for Tajima’s D, β-α values, and for the Z (HA: dN > dS) and MK tests. These patterns were similar for parasites of different origin. The polymorphic amino acid residues at PvCyRPA resembled the conformational B-cell peptides reported in PfCyRPA. Diversity at pvcyrpa exon-1 is caused by mutation and recombination. This seems to be maintained by balancing selection, likely due to selective immune pressure, all of which merit further study.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 668
Author(s):  
Zhi-gang Niu ◽  
Jin Qin ◽  
Yao Jiang ◽  
Xiang-Dong Ding ◽  
Yu-gong Ding ◽  
...  

The Bone Morphogenetic Protein 15 (BMP15) gene is known to have multiple single-nucleotide polymorphism sites associated with sheep fecundity. This study used gene sequence analysis and mutation detection assays for BMP15 by using 205 blood samples of ewes with known lambing records. Sequence analysis showed that mutation B1 missed the CTT base in exon 1 at positions 28–30, leading to a leucine deletion in the BMP15 protein. Litter size of ewes differed significantly between BB and B+ genotypes of B1 (p < 0.05); however, the differences between wild genotype (++) and homozygous (BB) or wild genotype (++) and heterozygous (B+) were not significant (p > 0.05). Another mutation, T755C, is a T-to-C base change at position 755 of exon 2, resulting in leucine replacement by proline at this position of the BMP15 protein (p.L252P). Two genotypes were identified in the flock: heterozygous (E+) and wild-type genotype (++). Ewes with heterozygous (E+) p.L252P had significantly larger litter sizes than those with the wild-type genotype (p < 0.05). Comprehensive analysis suggests that p.L252P is a mutation that affects fecundity in Cele black sheep.


1998 ◽  
Vol 83 (10) ◽  
pp. 3604-3608
Author(s):  
Gisah A. Carvalho ◽  
Roy E. Weiss ◽  
Samuel Refetoff

Fourteen T4-binding globulin (TBG) variants have been identified at the gene level. They are all located in the coding region of the gene and 6 produce complete deficiency of TBG (TBG-CD). We now describe the first mutation in a noncoding region producing TBG-CD. The proband was treated for over 20 yr with L-T4 because of fatigue associated with a low concentration of serum total T4. Fifteen family members were studied showing low total T4 inherited as an X chromosome-linked trait, and affected males had undetectable TBG in serum. Sequencing of the entire coding region and promoter of the TBG gene revealed no abnormality. However, an A to G transition was found in the acceptor splice junction of intron II that produced a new HaeIII restriction site cosegregating with the TBG-CD phenotype. Sequencing exon 1 to exon 3 of TBG complementary DNA reverse transcribed from messenger RNA of skin fibroblasts from an affected male, confirmed a shift in the ag acceptor splice site. This results in the insertion of a G in exon 2 and causes a frameshift and a premature stop at codon 195. This early termination of translation predicts a truncated TBG lacking 201 amino acids.


2021 ◽  
Author(s):  
Shigeru Suzuki ◽  
Kumihiro Matsuo ◽  
Yoshiya Ito ◽  
Atsushi Kobayashi ◽  
Takahide Kokumai ◽  
...  

Background: POU1F1 encodes both PIT-1α, which plays pivotal roles in pituitary development and GH, PRL and TSHB expression, and the alternatively spliced isoform PIT-1β, which contains an insertion of 26-amino acids (β-domain) in the transactivation domain of PIT-1α due to the use of an alternative splice acceptor at the end of the first intron. PIT-1β is expressed at much lower levels than PIT-1α and represses endogenous PIT-1α transcriptional activity. Although POU1F1 mutations lead to combined pituitary hormone deficiency (CPHD), no patients with β-domain mutations have been reported. Results: Here, we report that a three-generation family exhibited different degrees of CPHD, including growth hormone deficiency with intrafamilial variability of prolactin/TSH insufficiency and unexpected prolactinoma occurrence. The CPHD was due to a novel POU1F1 heterozygous variant (c.143-69T>G) in intron 1 of PIT-1α (RefSeq number NM_000306) or as c.152T>G (p.Ile51Ser) in exon 2 of PIT-1β (NM_001122757). Gene splicing experiments showed that this mutation yielded the PIT-1β transcript without other transcripts. Lymphocyte PIT-1β mRNA expression was significantly higher in the patients with the heterozygous mutation than a control. A luciferase reporter assay revealed that the PIT-1β-Ile51Ser mutant repressed PIT-1α and abolished transactivation capacity for the rat prolactin promoter in GH3 pituitary cells. Conclusions: We describe, for the first time, that PIT-1β mutation can cause CPHD through a novel genetic mechanism, such as PIT-1β overexpression, and that POU1F1 mutation might be associated with a prolactinoma. Analysis of new patients and long-term follow-up are needed to clarify the characteristics of PIT-1β mutations.


Sign in / Sign up

Export Citation Format

Share Document