scholarly journals Brown Adipose Crosstalk in Tissue Plasticity and Human Metabolism

2019 ◽  
Vol 41 (1) ◽  
pp. 53-65 ◽  
Author(s):  
Camilla Scheele ◽  
Christian Wolfrum

Abstract Infants rely on brown adipose tissue (BAT) as a primary source of thermogenesis. In some adult humans, residuals of brown adipose tissue are adjacent to the central nervous system and acute activation increases metabolic rate. Brown adipose tissue (BAT) recruitment occurs during cold acclimation and includes secretion of factors, known as batokines, which target several different cell types within BAT, and promote adipogenesis, angiogenesis, immune cell interactions, and neurite outgrowth. All these processes seem to act in concert to promote an adapted BAT. Recent studies have also provided exciting data on whole body metabolic regulation with a broad spectrum of mechanisms involving BAT crosstalk with liver, skeletal muscle, and gut as well as the central nervous system. These widespread interactions might reflect the property of BAT of switching between an active thermogenic state where energy is highly consumed and drained from the circulation, and the passive thermoneutral state, where energy consumption is turned off. (Endocrine Reviews 41: XXX – XXX, 2020)

2015 ◽  
Vol 1 (1) ◽  
Author(s):  
Atsushi Nakagomi ◽  
Sho Okada ◽  
Masataka Yokoyama ◽  
Yohko Yoshida ◽  
Ippei Shimizu ◽  
...  

2004 ◽  
Vol 24 (7) ◽  
pp. 780-788 ◽  
Author(s):  
Sylvain Lengacher ◽  
Pierre J. Magistretti ◽  
Luc Pellerin

Uncoupling proteins (UCPs) present in the inner mitochondrial membrane are involved in uncoupling respiration from ATP synthesis. Five UCP isoforms have been identified but information about their presence and level of expression in the central nervous system remains incomplete. To determine the nature and proportion of UCP isoform mRNAs present in brain cortex, we developed and optimized a specific quantitative reverse-transcription polymerase chain reaction procedure. Optimal range of RNA concentrations to be used in the reverse-transcriptase reaction was determined. Primer design and concentration were optimized for each target gene while polymerase chain reaction efficiency was assessed for a range of reverse-transcriptase dilutions. Genomic contribution to the quantitative signal was evaluated for each isoform and minimized. Three reference genes were tested for normalization, and β-actin was found to be the most stable among tissues. Results indicate that brain cortex contains significant amounts of all UCP mRNAs, with UCP5 and UCP4 being the most abundant, as opposed to brown adipose tissue and skeletal muscle, which predominantly express UCP1 and UCP3, respectively. These data provide a first quantitative assessment of UCP mRNA expression in mouse brain, showing the presence of all five isoforms with distinct proportions, thus suggesting specific roles in the central nervous system.


2021 ◽  
Vol 12 ◽  
Author(s):  
Emilio Badoer

Leptin and resistin are cytokines whose plasma levels correlate with adiposity. Leptin is a hormone synthesised and released from adipocytes and can be transported into the brain. Resistin is produced in adipocytes in rodents and in macrophages in humans, particularly macrophages that have infiltrated adipose tissue. Both hormones can act within the brain to influence sympathetic nerve activity. Leptin appears to have a generalised sympatho-excitatory actions whilst resistin appears to increase sympathetic nerve activity affecting the cardiovascular system but inhibits sympathetic nerve activity to brown adipose tissue, which contrasts with leptin. Since both hormones can be elevated in conditions of metabolic dysfunction, interactions/crosstalk between these two hormones in the brain is a real possibility. This review describes the current knowledge regarding such crosstalk within the central nervous system. The evidence suggests that with respect to sympathetic nerve activity, crosstalk between leptin and resistin can elicit enhanced sympatho-excitatory responses to the kidneys. In contrast, with respect to food intake, resistin has weaker effects, but in regard to insulin secretion and thermogenesis, leptin and resistin have opposing actions. Thus, in conditions in which there is increased resistin and leptin levels, the result of crosstalk in the central nervous system could contribute to worse cardiovascular and metabolic complications.


2020 ◽  
Author(s):  
Belén Picatoste ◽  
Lucie Yammine ◽  
Rosemary Leahey ◽  
David Soares ◽  
Paul Cohen ◽  
...  

SummaryThe role of brown adipose tissue (BAT) in thermogenesis is widely appreciated, whereas its more recently described role in whole-body metabolism is not as well understood. Here we demonstrate that deletion of Rab10 from brown adipocytes reduces insulin-stimulated glucose transport by inhibiting translocation of the GLUT4 glucose transporter to the plasma membrane. This blunting of glucose uptake into brown adipocytes induces glucose intolerance and insulin-resistance in female but not male mice. The defect in glucose uptake does not affect the thermogenic function of BAT, and the dysregulation of whole-body metabolism is independent of the thermogenic function of BAT, thereby revealing a metabolism-specific role for BAT in female mice. The reduced glucose uptake induced by RAB10 deletion disrupts ChREBP regulation of the expression of de novo lipogenesis-related (DNL) genes, providing a link between DNL in BAT and whole-body metabolic regulation that is independent of thermogenesis.


Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 142-OR
Author(s):  
MASAJI SAKAGUCHI ◽  
SHOTA OKAGAWA ◽  
SAYAKA KITANO ◽  
TATSUYA KONDO ◽  
EIICHI ARAKI

Sign in / Sign up

Export Citation Format

Share Document