Tumour necrosis factor-α and lymphotoxin have opposite effects on sympathetic efferent nerves to brown adipose tissue by direct action in the central nervous system

1989 ◽  
Vol 497 (1) ◽  
pp. 183-186 ◽  
Author(s):  
S.J. Holt ◽  
R.F. Grimble ◽  
D.A. York
Neurosignals ◽  
2003 ◽  
Vol 12 (2) ◽  
pp. 53-58 ◽  
Author(s):  
Maria A. Moro ◽  
Olivia Hurtado ◽  
Antonio Cárdenas ◽  
Cristina Romera ◽  
Jose L.M. Madrigal ◽  
...  

1995 ◽  
Vol 143 (2) ◽  
pp. 113-118 ◽  
Author(s):  
Joaquín López-Soriano ◽  
Josep M. Argilés ◽  
Francisco J. López-Soriano

1993 ◽  
Vol 265 (4) ◽  
pp. R877-R882 ◽  
Author(s):  
C. R. Plata-Salaman ◽  
J. P. Borkoski

Interleukin-8 (IL-8) is released in response to infection, inflammation, and trauma. The most important stimuli for IL-8 release during these pathological processes are IL-1, tumor necrosis factor, and bacterial lipopolysaccharide (endotoxin), factors that have been shown to suppress feeding. In the present study, the participation of IL-8 on the central regulation of feeding was investigated. Intracerebroventricular (icv) microinfusion of recombinant human IL-8 (rhIL-8, 1.0-100 ng/rat) suppressed the short-term (2-h) food intake. The most effective dose of rhIL-8, 20 ng, decreased 2-h food intake by 25% and nighttime food intake by 23%. Intracerebroventricular microinfusion of anti-rhIL-8 antibody (200 and 500 ng) blocked the effect of 20 ng rhIL-8 on 2-h and nighttime food intakes. Computerized analysis of behavioral patterns for the 2-h period demonstrated a specific reduction of meal size (by 33%), whereas meal frequency and meal duration were not affected after the icv microinfusion of 20 ng rhIL-8. This short-term food intake suppression by icv rhIL-8 was accompanied by a small, but significant, increase in cerebrospinal fluid-brain and rectal temperatures. Intraperitoneal administration of rhIL-8 in doses equivalent to those administered centrally had no effect on food intake. The results suggest that IL-8 acts directly in the central nervous system to decrease feeding. This effect of IL-8 may contribute to the food intake suppression frequently accompanying pathological processes.


2019 ◽  
Vol 41 (1) ◽  
pp. 53-65 ◽  
Author(s):  
Camilla Scheele ◽  
Christian Wolfrum

Abstract Infants rely on brown adipose tissue (BAT) as a primary source of thermogenesis. In some adult humans, residuals of brown adipose tissue are adjacent to the central nervous system and acute activation increases metabolic rate. Brown adipose tissue (BAT) recruitment occurs during cold acclimation and includes secretion of factors, known as batokines, which target several different cell types within BAT, and promote adipogenesis, angiogenesis, immune cell interactions, and neurite outgrowth. All these processes seem to act in concert to promote an adapted BAT. Recent studies have also provided exciting data on whole body metabolic regulation with a broad spectrum of mechanisms involving BAT crosstalk with liver, skeletal muscle, and gut as well as the central nervous system. These widespread interactions might reflect the property of BAT of switching between an active thermogenic state where energy is highly consumed and drained from the circulation, and the passive thermoneutral state, where energy consumption is turned off. (Endocrine Reviews 41: XXX – XXX, 2020)


Sign in / Sign up

Export Citation Format

Share Document