scholarly journals Keratinocyte Growth Factor Expression in the Mesenchymal Cells of Human Amnion*

1997 ◽  
Vol 82 (10) ◽  
pp. 3319-3323 ◽  
Author(s):  
M. Linette Casey ◽  
Paul C. MacDonald

Abstract Amnion epithelial and mesenchymal cells were separated by differential protease treatment, and the separated cells were maintained in monolayer culture. Keratinocyte growth factor (KGF) messenger RNA (mRNA) was readily detected by Northern analysis of amnion mesenchymal cell total RNA (10 μg) but not in amnion epithelial cells. Treatment of the amnion mesenchymal cells in serum-free medium with tetradecanoyl phorbol acetate (1 nm) caused an increase in the level of KGF mRNA. Forskolin treatment also caused an increase in KGF mRNA but not to the levels attained with tetradecanoyl phorbol acetate treatment. Dexamethasone (1 nm) treatment of these cells effected a reduction in the level of KGF mRNA. Prolonged maintenance of mesenchymal cells in serum-free medium also was associated with an increase in the level of KGF mRNA. Treatment with a variety of other agents, viz., interleukin (IL)-1, IL-6 plus or minus IL-6 soluble receptor, IL-11, oncostatin M , epidermal growth factor (EGF), and transforming growth factor-β did not modify the level of KGF mRNA. Treatment of amnion epithelial cells with KGF caused an increase in the rate of [3H]thymidine incorporation, but the rate of cell replication induced by KGF was less than that induced by treatment with EGF. Transforming growth factor-β treatment inhibited basal and EGF- and KGF-stimulated amnion epithelial cell replication. The findings of this study are indicative that KGF is expressed in human amnion mesenchymal cells, and that KGF may act on the epithelial cells of this tissue.

Burns ◽  
2013 ◽  
Vol 39 (5) ◽  
pp. 905-915 ◽  
Author(s):  
Simat Siti Fatimah ◽  
Geok Chin Tan ◽  
Kienhui Chua ◽  
Ay Eeng Tan ◽  
Abdul Ghani Nur Azurah ◽  
...  

2020 ◽  
Vol 217 (3) ◽  
Author(s):  
Nikolaos G. Frangogiannis

TGF-β is extensively implicated in the pathogenesis of fibrosis. In fibrotic lesions, spatially restricted generation of bioactive TGF-β from latent stores requires the cooperation of proteases, integrins, and specialized extracellular matrix molecules. Although fibroblasts are major targets of TGF-β, some fibrogenic actions may reflect activation of other cell types, including macrophages, epithelial cells, and vascular cells. TGF-β–driven fibrosis is mediated through Smad-dependent or non-Smad pathways and is modulated by coreceptors and by interacting networks. This review discusses the role of TGF-β in fibrosis, highlighting mechanisms of TGF-β activation and signaling, the cellular targets of TGF-β actions, and the challenges of therapeutic translation.


Sign in / Sign up

Export Citation Format

Share Document