scholarly journals SUN-017 Developmental Programming: Prenatal Testosterone Treatment Induced Metabolic Defects May Involve Premature Cellular Senescence

2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Muraly Puttabyatappa ◽  
Joseph Norman Ciarelli ◽  
Vasantha Padmanabhan

Abstract Prenatal exposure to excess testosterone (T) programs peripheral insulin resistance and dyslipidemia along with tissue-specific increases in ectopic lipid accumulation, oxidative stress and insulin resistance in liver and muscle of the early adult female sheep. Prenatal T increased inflammation and oxidative stress in the visceral (VAT) but not subcutaneous (SAT) adipose tissue, with no effect on insulin sensitivity in both depots. These systemic and tissue-specific metabolic changes are reminiscent of defects such as non-alcoholic fatty liver disease (NFLAD) common among aged individuals. Because it is known that gestational insults can program premature aging of reproductive organs and chronic cardiovascular abnormalities, we hypothesized that programming of premature cellular senescence is one of the ways through which gestational T induces premature aging of metabolic systems during early adulthood. To test this hypothesis, mitochondrial oxidative phosphorylation (OXPHOS) and telomere length, as measure of cellular senescence, were assessed in liver, muscle, VAT and SAT collected from control and prenatal T- (100mg T propionate twice a week from days 30-90 of gestation) -treated female sheep at 21 months of age. Genomic DNA was subjected to TeloTAGG Telomere Length Assay (Sigma-Aldrich, St Louis, MO) and whole tissue protein lysates analyzed by immunoblot using Total OXPHOS Human WB Antibody Cocktail (ab110411, Abcam, Cambridge, MA). Data were analyzed by Student’s t test and Cohen’s effect size analysis. Prenatal T-treatment induced 1) a trend (p = 0.09) towards a large magnitude increase in shorter telomere fragments (0.08 -3.6 KB) in the liver and 2) a non-significant large magnitude decrease in shorter telomere fragments in muscle and SAT without having any effect in the VAT. Prenatal T also induced a large magnitude increase in mitochondrial OXPHOS protein complexes II and IV in liver, without having an effect at the level of the muscle, VAT and SAT. These findings are suggestive that prenatal T-treatment induced hepatic defects may involve premature cellular senescence. The relevance of parallel increase in mitochondrial OXPHOS in the liver is unclear and remains to be explored. The defects observed in the muscle and SAT may occur independent of cellular senescence or alterations in mitochondrial function. The lack of change in telomere length and mitochondrial OXPHOS in spite of increased inflammation and oxidative stress in the VAT is suggestive of a potential protective function in play, consistent with maintenance of the insulin sensitivity in this tissue. This study, therefore, raises the possibility that metabolic defects programmed by gestational insults may involve premature aging of metabolic organs in a tissue-specific manner and have translational bearing in conditions associated with hyperandrogenic states.

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Kaiyue Sun ◽  
Pengyu Yang ◽  
Rong Zhao ◽  
Yuting Bai ◽  
Zijiao Guo

The present study was designed to evaluate the effects of matrine (MAT) on D-galactose- (D-gal-) induced aging and relative mechanism. Vitamin E at the dose of 100 mg/kg was used as a standard positive control. MAT significantly improved the D-gal-induced recognition and spatial memory impairment in novel object recognition and Y maze tests, and exercise endurance decreased in the weight-loaded swimming test at 2 and 10 mg/kg. We found that D-gal treatment induced noticeably aging-related changes such as reducing thymus coefficients, increasing the pathological injury and cellular senescence of liver, spleen, and hippocampus, as well as an increase in cyclin-dependent kinase inhibitor p16, p19, and p21 gene expression and the interleukin-1β expression in the liver and hippocampus. MAT showed effective protection on such changes. Furthermore, MAT decreased the oxidative stress of the liver, plasma, and brain, as evidenced by increased total antioxidant capacity, total superoxide dismutase, and catalase activities and decreased the malondialdehyde level. Additionally, there was a significant positive correlation between swimming time in weight-loaded swimming time and thymus index. MAT ameliorated aging-related disorder caused by D-gal through the inhibition of both cellular senescence and oxidative stress. The study provides further evidence for drug development of MAT for prevention or treatment of the aging-associated disorder.


2012 ◽  
Vol 303 (7) ◽  
pp. L557-L566 ◽  
Author(s):  
Hongwei Yao ◽  
Irfan Rahman

Histone deacetylase 2 (HDAC2) is a class I histone deacetylase that regulates various cellular processes, such as cell cycle, senescence, proliferation, differentiation, development, apoptosis, and glucocorticoid function in inhibiting inflammatory response. HDAC2 has been shown to protect against DNA damage response and cellular senescence/premature aging via an epigenetic mechanism in response to oxidative stress. These phenomena are observed in patients with chronic obstructive pulmonary disease (COPD). HDAC2 is posttranslationally modified by oxidative/carbonyl stress imposed by cigarette smoke and oxidants, leading to its reduction via an ubiquitination-proteasome dependent degradation in lungs of patients with COPD. In this perspective, we have discussed the role of HDAC2 posttranslational modifications and its role in regulation of inflammation, histone/DNA epigenetic modifications, DNA damage response, and cellular senescence, particularly in inflammaging, and during the development of COPD. We have also discussed the potential directions for future translational research avenues in modulating lung inflammaging and cellular senescence based on epigenetic chromatin modifications in diseases associated with increased oxidative stress.


2020 ◽  
Author(s):  
Katia Martínez‐González ◽  
Azul Islas‐Hernández ◽  
José Darío Martínez‐Ezquerro ◽  
Federico Bermúdez‐Rattoni ◽  
Paola Garcia‐delaTorre

2008 ◽  
Vol 44 (8) ◽  
pp. 1592-1598 ◽  
Author(s):  
Valerie Cattan ◽  
Nathalie Mercier ◽  
Jeffrey P. Gardner ◽  
Veronique Regnault ◽  
Carlos Labat ◽  
...  

2019 ◽  
Author(s):  
Katia Martínez-González ◽  
Azul Islas-Hernández ◽  
José Darío Martínez-Ezquerro ◽  
Federico Bermúdez-Rattoni ◽  
Paola Garcia-delaTorre

AbstractAlzheimer’s Disease (AD) is the most common cause of dementia and aging is its major risk factor. Changes in telomere length have been associated with aging and some degenerative diseases. Our aim was to explore some of the molecular changes caused by the progression of AD in a transgenic murine model (3xTg-AD; B6; 129-Psen1 <tm1Mpm> Tg (APPSwe, tauP301L) 1Lfa). Telomere length was assessed by qPCR in both brain tissue and peripheral blood cells and compared between three age groups: 5, 9, and 13 months. In addition, a possible effect of oxidative stress on telomere length and AD progression was explored. Shorter telomeres were found in blood cells of older transgenic mice compared to younger and wild type mice but no changes in telomere length in the hippocampus. An increase in oxidative stress with age was found for all strains but no correlation was found between oxidative stress and shorter telomere length for transgenic mice. Telomere length and oxidative stress are affected by AD progression in the 3xTg-AD murine model. Changes in blood cells are more noticeable than changes in brain tissue, suggesting that systemic changes can be detected early in the disease in this murine model.


Sign in / Sign up

Export Citation Format

Share Document