scholarly journals A comparative study using dual-energy X-ray absorptiometry, air displacement plethysmography, and skinfolds to assess fat mass in preterms at term equivalent age

Author(s):  
Dana F. J. Yumani ◽  
Dide de Jongh ◽  
Harrie N. Lafeber ◽  
Mirjam M. van Weissenbruch

Abstract The aim of this study was to compare whole body composition, generated by air displacement plethysmography (ADP) and dual-energy X-ray absorptiometry (DXA), and to evaluate the potential predictive value of the sum of skinfolds (∑SFT) for whole body composition, in preterm infants at term equivalent age. A convenience sample of sixty-five preterm infants with a mean (SD) gestational age of 29 (1.6) weeks was studied at term equivalent age. Fat mass measured by DXA and ADP were compared and the ability of the ∑SFT to predict whole body fat mass was investigated. There was poor agreement between fat mass percentage measured with ADP compared with DXA (limits of agreement: − 4.8% and 13.7%). A previously modeled predictive equation with the ∑SFT as a predictor for absolute fat mass could not be validated. Corrected for confounders, the ∑SFT explained 42% (ADP, p = 0.001) and 75% (DXA, p = 0.001) of the variance in fat mass percentage. Conclusions: The ∑SFT was not able to accurately predict fat mass and ADP and DXA did not show comparable results. It remains to be elucidated whether or not DXA provides more accurate assessment of whole body fat mass than ADP in preterm infants. Trial registration: NTR5311 What is Known:• Diverse methods are used to assess fat mass in preterm infants. What is New:• This study showed that there is poor agreement between dual-energy X-ray absorptiometry, air displacement plethysmography, and skinfold thickness measurements.• Our results affirm the need for consensus guidelines on how to measure fat mass in preterm infants, to improve the assimilation of data from different studies and the implementation of the findings from those studies.

Nutrients ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 288 ◽  
Author(s):  
Constanze Hamatschek ◽  
Efrah I. Yousuf ◽  
Lea Sophie Möllers ◽  
Hon Yiu So ◽  
Katherine M. Morrison ◽  
...  

To optimize infant nutrition, the nature of weight gain must be analyzed. This study aims to review publications and develop growth charts for fat and fat-free mass for preterm and term infants. Body composition data measured by air displacement plethysmography (ADP) and dual energy X-ray absorptiometry (DXA) in preterm and term infants until six months corrected age were abstracted from publications (31 December 1990 to 30 April 2019). Age-specific percentiles were calculated. ADP measurements were used in 110 studies (2855 preterm and 22,410 term infants), and DXA was used in 28 studies (1147 preterm and 3542 term infants). At term age, preterm infants had higher percent-fat than term-born infants (16% vs. 11%, p < 0.001). At 52 weeks postmenstrual age (PMA), both reached similar percent-fat (24% vs. 25%). In contrast, at term age, preterm infants had less fat-free mass (2500 g vs. 2900 g) by 400 g. This difference decreased to 250 g by 52 weeks, and to 100 g at 60 weeks PMA (5000 g vs. 5100 g). DXA fat-free mass data were comparable with ADP. However, median percent-fat was up to 5% higher with DXA measurements compared with ADP with PMA > 50 weeks. There are methodological differences between ADP and DXA measures for infants with higher fat mass. The cause of higher fat mass in preterm infants at term age needs further investigation.


2020 ◽  
Vol 45 (3) ◽  
pp. 318-326
Author(s):  
Zahra Farahnak ◽  
Ye Yuan ◽  
Catherine A. Vanstone ◽  
Hope A. Weiler

Research regarding polyunsaturated fatty acid (PUFA) status and body composition in neonates is limited. This study tested the relationship between newborn docosahexaenoic acid (DHA) status and body composition. Healthy mothers and their term-born infants (n = 100) were studied within 1 month postpartum for anthropometry and whole-body composition using dual-energy X-ray absorptiometry. Maternal and infant red blood cell (RBC) membrane PUFA profiles were measured using gas chromatography (expressed as percentage of total fatty acids). Data were grouped according to infant RBC DHA quartiles and tested for differences in n-3 status and infant body composition using mixed-model ANOVA, Spearman correlations, and regression analyses (P < 0.05). Mothers were 32.2 ± 4.6 years (mean ± SD) of age, infants (54% males) were 0.68 ± 0.23 month of age, and 80% exclusively breastfed. Infant RBC DHA (ranged 3.96% to 7.75% of total fatty acids) inversely associated with infant fat mass (r = –0.22, P = 0.03). Infant and maternal RBC n-6/n-3 PUFA ratio (r2 = 0.28, P = 0.043; r2 = 0.28, P = 0.041 respectively) were positively associated with fat mass. These results demonstrate that both maternal and infant long-chain PUFA status are associated with neonatal body composition. Novelty Our findings support an early window to further explore the relationship between infant n-3 PUFA status and body composition. Maternal and infant n-3 PUFA status is inversely related to neonatal whole-body fat mass. DHA appears to be the best candidate to test in the development of a lean body phenotype.


2019 ◽  
Vol 92 (1103) ◽  
pp. 20190300
Author(s):  
Andrew D. Weedall ◽  
Adrian J. Wilson ◽  
Sarah C. Wayte

Objective: To validate MRI fat measurement protocols using purpose built test objects and by comparison with air-displacement plethysmography (ADP) whole-body fat measurements in non-obese subjects. Methods: Test objects of known fat concentration were used to quantify the accuracy of the MRI measurements. 10 participants with a body mass index in the range 18–30 underwent whole-body MRI using two different Dixon-based sequences (LAVA Flex and IDEAL IQ) to obtain an estimate of their whole-body fat mass. The MRI determined fat mass was compared to the fat mass determined by ADP. Results: MRI test object measurements showed a high correlation to expected fat percentage (r > 0.98). The participant MRI and ADP results were highly correlated (r = 0.99) but on average (mean ± standard deviation) MRI determined a higher fat mass than ADP (3.8 ± 3.1 kg for LAVA Flex and 1.9 ± 3.2 kg for IDEAL IQ). There was no trend in the difference between MRI and ADP with total fat mass. Conclusion: The good agreement between MRI and ADP shows that Dixon-based MRI can be used effectively as a tool in physiological research for non-obese adults. Advances in knowledge: This work found that for ten non-obese subjects body mass index had no effect on the MRI determination of whole-body fat mass.


2020 ◽  
Vol 8 ◽  
Author(s):  
Marlies Bruckner ◽  
Zahra Khan ◽  
Christoph Binder ◽  
Nicholas Morris ◽  
Bernadette Windisch ◽  
...  

2000 ◽  
Vol 89 (2) ◽  
pp. 613-620 ◽  
Author(s):  
David A. Fields ◽  
Michael I. Goran

The purpose of this study was to compare the accuracy, precision, and bias of fat mass (FM) as assessed by dual-energy X-ray absorptiometry (DXA), hydrostatic weighing (HW), air-displacement plethysmography (PM) using the BOD POD body composition system and total body water (TBW) against the four-compartment (4C) model in 25 children (11.4 ± 1.4 yr). The regression between FM by the 4C model and by DXA deviated significantly from the line of identity (FM by 4C model = 0.84 × FM by DXA + 0.95 kg; R 2 = 0.95), as did the regression between FM by 4C model and by TBW (FM by 4C model = 0.85 × FM by TBW − 0.89 kg; R 2 = 0.98). The regression between FM by the 4C model and by HW did not significantly deviate from the line of identity (FM by 4C model = 1.09 × FM by HW + 0.94 kg; R 2 = 0.95) and neither did the regression between FM by 4C (using density assessed by PM) and by PM (FM by 4C model = 1.03 × FM by PM + 0.88; R 2 = 0.97). DXA, HW, and TBW all showed a bias in the estimate of FM, but there was no bias for PM. In conclusion, PM was the only technique that could accurately, precisely, and without bias estimate FM in 9- to 14-yr-old children.


2019 ◽  
Vol 74 (12) ◽  
pp. 1937-1943
Author(s):  
Joshua F Baker ◽  
Susan L Ziolkowski ◽  
Jin Long ◽  
Mary B Leonard ◽  
Andrew Stokes

Abstract Background It is controversial whether an altered relationship between adiposity and mortality occurs with aging. We evaluated associations between adiposity and mortality in younger and older participants before and after considering historical weight loss. Methods This study used whole-body dual-energy x-ray absorptiometry data from the National Health and Nutrition Examination Survey in adults at least 20 years of age. Fat mass index (FMI), determined by dual-energy x-ray absorptiometry, was converted to age-, sex-, and race-specific Z-Scores. Percent change in weight from the maximum reported weight was determined and categorized. Cox proportional hazards models assessed associations between quintile of FMI Z-Score and mortality. Sequential models adjusted for percent weight change since the maximum weight. Results Participants with lower FMI were more likely to have lost weight from their maximum, particularly among older participants with lower FMI. Substantially greater risk of mortality was observed for the highest quintile of FMI Z-Score compared to the second quintile among younger individuals [HR 2.50 (1.69, 3.72) p < .001]. In contrast, a more modest association was observed among older individuals in the highest quintile [HR 1.23 (0.99, 1.52) p = .06] (p for interaction <.001). In both the younger and older participants, the risks of greater FMI Z-Score were magnified when adjusting for percent weight change since maximum reported weight. Conclusions Older people with low fat mass report greater historical weight loss, potentially explaining substantially altered relationships between fat mass and mortality in older individuals. As a result, epidemiologic studies performed in older populations will likely underestimate the causal risks of excess adiposity.


Sign in / Sign up

Export Citation Format

Share Document