scholarly journals Marked Potentiation of the Dominant Negative Action of a Mutant Thyroid Hormone Receptor β in Mice by the Ablation of One Wild-Type β Allele

2003 ◽  
Vol 17 (5) ◽  
pp. 895-907 ◽  
Author(s):  
H. Suzuki ◽  
X.-Y. Zhang ◽  
D. Forrest ◽  
M. C. Willingham ◽  
S.-Y. Cheng

Abstract Mutations in the thyroid hormone receptor (TR) β gene result in resistance to thyroid hormone (RTH), characterized by reduced sensitivity of tissues to thyroid hormone. To understand which physiological TR pathways are affected by mutant receptors, we crossed mice with a dominantly negative TRβ mutation (TRβPV) with mice carrying a TRβ null mutation (TRβ−/−) to determine the consequences of the TRβPV mutation in the absence of wild-type TRβ. TRβPV/− mice are distinct from TRβ+/− mice that did not show abnormalities in thyroid function tests. TRβPV/− mice are also distinct from TRβPV/+ and TRβ−/− mice in that the latter shows mild dysfunction in the pituitary-thyroid axis, whereas the former exhibit very severe abnormalities, including extensive papillary hyperplasia of the thyroid epithelium, indistinguishable from that observed in TRβPV/PV mice. Similar to TRβPV/PV mice, TRβPV/− mice exhibited impairment in weight gain. Moreover, the abnormal regulation patterns of T3-target genes in the tissues of TRβPV/− and TRβPV/PV mice were strikingly similar. Using TR isoforms and PV-specific antibodies in gel shift assays, we found that in vivo, PV competed with TRα1 for binding to thyroid hormone response elements in TRβPV/− mice as effectively as in TRβPV/PV mice. Thus, the actions of mutant TRβ are markedly potentiated by the ablation of the second TRβ allele, suggesting that interference with wild-type TRα1-mediated gene regulation by mutant TRβ leads to severe RTH.

2013 ◽  
Vol 33 (2) ◽  
Author(s):  
Susi Dudazy-Gralla ◽  
Kristina Nordström ◽  
Peter Josef Hofmann ◽  
Dina Abdul Meseh ◽  
Lutz Schomburg ◽  
...  

TRα1 (thyroid hormone receptor α1) is well recognized for its importance in brain development. However, due to the difficulties in predicting TREs (thyroid hormone response elements) in silico and the lack of suitable antibodies against TRα1 for ChIP (chromatin immunoprecipitation), only a few direct TRα1 target genes have been identified in the brain. Here we demonstrate that mice expressing a TRα1–GFP (green fluorescent protein) fusion protein from the endogenous TRα locus provide a valuable animal model to identify TRα1 target genes. To this end, we analysed DNA–TRα1 interactions in vivo using ChIP with an anti-GFP antibody. We validated our system using established TREs from neurogranin and hairless, and by verifying additional TREs from known TRα1 target genes in brain and heart. Moreover, our model system enabled the identification of novel TRα1 target genes such as RNF166 (ring finger protein 166). Our results demonstrate that transgenic mice expressing a tagged nuclear receptor constitute a feasible approach to study receptor–DNA interactions in vivo, circumventing the need for specific antibodies. Models like the TRα1–GFP mice may thus pave the way for genome-wide mapping of nuclear receptor-binding sites, and advance the identification of novel target genes in vivo.


2008 ◽  
Vol 411 (1) ◽  
pp. 19-26 ◽  
Author(s):  
Kyung-Chul Choi ◽  
So-Young Oh ◽  
Hee-Bum Kang ◽  
Yoo-Hyun Lee ◽  
Seungjoo Haam ◽  
...  

A central issue in mediating repression by nuclear hormone receptors is the distinct or redundant function between co-repressors N-CoR (nuclear receptor co-repressor) and SMRT (silencing mediator of retinoid and thyroid hormone receptor). To address the functional relationship between SMRT and N-CoR in TR (thyroid hormone receptor)-mediated repression, we have identified multiple TR target genes, including BCL3 (B-cell lymphoma 3-encoded protein), Spot14 (thyroid hormone-inducible hepatic protein), FAS (fatty acid synthase), and ADRB2 (β-adrenergic receptor 2). We demonstrated that siRNA (small interfering RNA) treatment against either N-CoR or SMRT is sufficient for the de-repression of multiple TR target genes. By the combination of sequence mining and physical association as determined by ChIP (chromatin immunoprecipitation) assays, we mapped the putative TREs (thyroid hormone response elements) in BCL3, Spot14, FAS and ADRB2 genes. Our data clearly show that SMRT and N-CoR are independently recruited to various TR target genes. We also present evidence that overexpression of N-CoR can restore repression of endogenous genes after knocking down SMRT. Finally, unliganded, co-repressor-free TR is defective in repression and interacts with a co-activator, p300. Collectively, these results suggest that both SMRT and N-CoR are limited in cells and that knocking down either of them results in co-repressor-free TR and consequently de-repression of TR target genes.


Endocrinology ◽  
2011 ◽  
Vol 152 (3) ◽  
pp. 1136-1142 ◽  
Author(s):  
Carmen Grijota-Martínez ◽  
Eric Samarut ◽  
Thomas S. Scanlan ◽  
Beatriz Morte ◽  
Juan Bernal

Thyroid hormone analogs with selective actions through specific thyroid hormone receptor (TR) subtypes are of great interest. They might offer the possibility of mimicking physiological actions of thyroid hormone with receptor subtype or tissue specificity with therapeutic aims. They are also pharmacological tools to dissect biochemical pathways mediated by specific receptor subtypes, in a complementary way to mouse genetic modifications. In this work, we studied the in vivo activity in developing rats of two thyroid hormone agonists, the TRβ-selective GC-24 and the TRα-selective CO23. Our principal goal was to check whether these compounds were active in the rat brain. Analog activity was assessed by measuring the expression of thyroid hormone target genes in liver, heart, and brain, after administration to hypothyroid rats. GC-24 was very selective for TRβ and lacked activity on the brain. On the other hand, CO23 was active in liver, heart, and brain on genes regulated by either TRα or TRβ. This compound, previously shown to be TRα-selective in tadpoles, displayed no selectivity in the rat in vivo.


2004 ◽  
Vol 24 (20) ◽  
pp. 9026-9037 ◽  
Author(s):  
Daniel R. Buchholz ◽  
Akihiro Tomita ◽  
Liezhen Fu ◽  
Bindu D. Paul ◽  
Yun-Bo Shi

ABSTRACT Thyroid hormone (T3) has long been known to be important for vertebrate development and adult organ function. Whereas thyroid hormone receptor (TR) knockout and transgenic studies of mice have implicated TR involvement in mammalian development, the underlying molecular bases for the resulting phenotypes remain to be determined in vivo, especially considering that T3 is known to have both genomic, i.e., through TRs, and nongenomic effects on cells. Amphibian metamorphosis is an excellent model for studying the role of TR in vertebrate development because of its total dependence on T3. Here we investigated the role of TR in metamorphosis by developing a dominant positive mutant thyroid hormone receptor (dpTR). In the frog oocyte transcription system, dpTR bound a T3-responsive promoter and activated the promoter independently of T3. Transgenic expression of dpTR under the control of a heat shock-inducible promoter in premetamorphic tadpoles led to precocious metamorphic transformations. Molecular analyses showed that dpTR induced metamorphosis by specifically binding to known T3 target genes, leading to increased local histone acetylation and gene activation, similar to T3-bound TR during natural metamorphosis. Our experiments indicated that the metamorphic role of T3 is through genomic action of the hormone, at least on the developmental parameters tested. They further provide the first example where TR is shown to mediate directly and sufficiently these developmental effects of T3 in individual organs by regulating target gene expression in these organs.


2013 ◽  
Vol 289 (3) ◽  
pp. 1313-1328 ◽  
Author(s):  
Preeti Ramadoss ◽  
Brian J. Abraham ◽  
Linus Tsai ◽  
Yiming Zhou ◽  
Ricardo H. Costa-e-Sousa ◽  
...  

Triiodothyronine (T3) regulates key metabolic processes in the liver through the thyroid hormone receptor, TRβ1. However, the number of known target genes directly regulated by TRβ1 is limited, and the mechanisms by which positive and especially negative transcriptional regulation occur are not well understood. To characterize the TRβ1 cistrome in vivo, we expressed a biotinylated TRβ1 in hypo- and hyperthyroid mouse livers, used ChIP-seq to identify genomic TRβ1 targets, and correlated these data with gene expression changes. As with other nuclear receptors, the majority of TRβ1 binding sites were not in proximal promoters but in the gene body of known genes. Remarkably, T3 can dictate changes in TRβ1 binding, with strong correlation to T3-induced gene expression changes, suggesting that differential TRβ1 binding regulates transcriptional outcome. Additionally, DR-4 and DR-0 motifs were significantly enriched at binding sites where T3 induced an increase or decrease in TRβ1 binding, respectively, leading to either positive or negative regulation by T3. Taken together, the results of this study provide new insights into the mechanisms of transcriptional regulation by TRβ1 in vivo.


1997 ◽  
Vol 17 (12) ◽  
pp. 7195-7207 ◽  
Author(s):  
J S Qi ◽  
V Desai-Yajnik ◽  
Y Yuan ◽  
H H Samuels

Thyroid hormone receptor (T3R) is a member of the steroid hormone receptor gene family of nuclear hormone receptors. In most cells T3R activates gene expression only in the presence of its ligand, L-triiodothyronine (T3). However, in certain cell types (e.g., GH4C1 cells) expression of T3R leads to hormone-independent constitutive activation. This activation by unliganded T3R occurs with a variety of gene promoters and appears to be independent of the binding of T3R to specific thyroid hormone response elements (TREs). Previous studies indicate that this constitutive activation results from the titration of an inhibitor of transcription. Since the tumor suppresser p53 is capable of repressing a wide variety of gene promoters, we considered the possibility that the inhibitor is p53. Evidence to support this comes from studies indicating that expression of p53 blocks T3R-mediated constitutive activation in GH4C1 cells. In contrast with hormone-independent activation by T3R, p53 had little or no effect on T3-dependent stimulation which requires TREs. In addition, p53 mutants which oligomerize with wild-type p53 and interfere with its function also increase promoter activity. This enhancement is of similar magnitude to but is not additive with the stimulation mediated by unliganded T3R, suggesting that they target the same factor. Since p53 mutants are known to target wild-type p53 in the cell, this suggests that T3R also interacts with p53 in vivo and that endogenous levels of p53 act to suppress promoter activity. Evidence supporting both functional and physical interactions of T3R and p53 in the cell is presented. The DNA binding domain (DBD) of T3R is important in mediating constitutive activation, and the receptor DBD appears to functionally interact with the N terminus of p53 in the cell. In vitro binding studies indicate that the T3R DBD is important for interaction of T3R with p53 and that this interaction is reduced by T3. These findings are consistent with the in vivo studies indicating that p53 blocks constitutive activation but not ligand-dependent stimulation. These studies provide insight into mechanisms by which unliganded nuclear hormone receptors can modulate gene expression and may provide an explanation for the mechanism of action of the v-erbA oncoprotein, a retroviral homolog of chicken T3R alpha.


2005 ◽  
Vol 25 (13) ◽  
pp. 5712-5724 ◽  
Author(s):  
Bindu Diana Paul ◽  
Liezhen Fu ◽  
Daniel R. Buchholz ◽  
Yun-Bo Shi

ABSTRACT Thyroid hormone receptors (TRs) can repress or activate target genes depending on the absence or presence of thyroid hormone (T3), respectively. This hormone-dependent gene regulation is mediated by recruitment of corepressors in the absence of T3 and coactivators in its presence. Many TR-interacting coactivators have been characterized in vitro. In comparison, few studies have addressed the developmental roles of these cofactors in vivo. We have investigated the role of coactivators in transcriptional activation by TR during postembryonic tissue remodeling by using amphibian metamorphosis as a model system. We have previously shown that steroid receptor coactivator 3 (SRC3) is expressed and upregulated during metamorphosis, suggesting a role in gene regulation by liganded TR. Here, we have generated transgenic tadpoles expressing a dominant negative form of SRC3 (F-dnSRC3). The transgenic tadpoles exhibited normal growth and development throughout embryogenesis and premetamorphic stages. However, transgenic expression of F-dnSRC3 inhibits essentially all aspects of T3-induced metamorphosis, as well as natural metamorphosis, leading to delayed or arrested metamorphosis or the formation of tailed frogs. Molecular analysis revealed that F-dnSRC3 functioned by blocking the recruitment of endogenous coactivators to T3 target genes without affecting corepressor release, thereby preventing the T3-dependent gene regulation program responsible for tissue transformations during metamorphosis. Our studies thus demonstrate that coactivator recruitment, aside from corepressor release, is required for T3 function in development and further provide the first example where a specific coactivator-dependent gene regulation pathway by a nuclear receptor has been shown to underlie specific developmental events.


Sign in / Sign up

Export Citation Format

Share Document