scholarly journals Molecular Analysis of a Congenital Iodide Transport Defect: G543E Impairs Maturation and Trafficking of the Na+/I− Symporter

2005 ◽  
Vol 19 (11) ◽  
pp. 2847-2858 ◽  
Author(s):  
Antonio De la Vieja ◽  
Christopher S. Ginter ◽  
Nancy Carrasco

Abstract The Na+/I− symporter (NIS) is a key membrane glycoprotein that mediates active I− transport in the thyroid and other tissues. Upon isolation of the cDNA encoding NIS, 10 NIS mutations that cause congenital iodide transport defect have been identified. Three of these mutations (T354P, G395R, and Q267E) have been thoroughly characterized at the molecular level. All three NIS mutant proteins are correctly targeted to the plasma membrane; however, whereas Q267E displays minimal activity, T354P and G395R are inactive. Here, we show that in contrast to these mutants, G543E NIS matures only partially and is retained intracellularly; thus, it is not targeted properly to the cell surface, apparently because of faulty folding. These findings indicate that the G543 residue plays significant roles in NIS maturation and trafficking. Remarkably, NIS activity was rescued by small neutral amino acid substitutions (volume < 129 Å3) at this position, suggesting that G543 is in a tightly packed region of NIS.

2014 ◽  
Vol 289 (44) ◽  
pp. 30257-30267 ◽  
Author(s):  
Jun Suzuki ◽  
Eiichi Imanishi ◽  
Shigekazu Nagata

Apoptotic cells expose phosphatidylserine (PtdSer) on their surface as an “eat me” signal. Mammalian Xk-related (Xkr) protein 8, which is predicted to contain six transmembrane regions, and its Caenorhabditis elegans homolog CED-8 promote apoptotic PtdSer exposure. The mouse and human Xkr families consist of eight and nine members, respectively. Here, we found that mouse Xkr family members, with the exception of Xkr2, are localized to the plasma membrane. When Xkr8-deficient cells, which do not expose PtdSer during apoptosis, were transformed by Xkr family members, the transformants expressing Xkr4, Xkr8, or Xkr9 responded to apoptotic stimuli by exposing cell surface PtdSer and were efficiently engulfed by macrophages. Like Xkr8, Xkr4 and Xkr9 were found to possess a caspase recognition site in the C-terminal region and to require its direct cleavage by caspases for their function. Site-directed mutagenesis of the amino acid residues conserved among CED-8, Xkr4, Xkr8, and Xkr9 identified several essential residues in the second transmembrane and second cytoplasmic regions. Real time PCR analysis indicated that unlike Xkr8, which is ubiquitously expressed, Xkr4 and Xkr9 expression is tissue-specific.


1998 ◽  
Vol 180 (14) ◽  
pp. 3563-3569 ◽  
Author(s):  
Jeryl L. Appleby ◽  
Robert B. Bourret

ABSTRACT CheY serves as a structural prototype for the response regulator proteins of two-component regulatory systems. Functional roles have previously been defined for four of the five highly conserved residues that form the response regulator active site, the exception being the hydroxy amino acid which corresponds to Thr87 in CheY. To investigate the contribution of Thr87 to signaling, we characterized, genetically and biochemically, several cheY mutants with amino acid substitutions at this position. The hydroxyl group appears to be necessary for effective chemotaxis, as a Thr→Ser substitution was the only one of six tested which retained a Che+ swarm phenotype. Although nonchemotactic, cheY mutants with amino acid substitutions T87A and T87C could generate clockwise flagellar rotation either in the absence of CheZ, a protein that stimulates dephosphorylation of CheY, or when paired with a second site-activating mutation, Asp13→Lys, demonstrating that a hydroxy amino acid at position 87 is not essential for activation of the flagellar switch. All purified mutant proteins examined phosphorylated efficiently from the CheA kinase in vitro but were impaired in autodephosphorylation. Thus, the mutant CheY proteins are phosphorylated to a greater degree than wild-type CheY yet support less clockwise flagellar rotation. The data imply that Thr87 is important for generating and/or stabilizing the phosphorylation-induced conformational change in CheY. Furthermore, the various position 87 substitutions differentially affected several properties of the mutant proteins. The chemotaxis and autodephosphorylation defects were tightly linked, suggesting common structural elements, whereas the effects on self-catalyzed and CheZ-mediated dephosphorylation of CheY were uncorrelated, suggesting different structural requirements for the two dephosphorylation reactions.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2181-2181
Author(s):  
Marloes R. Tijssen ◽  
Franca di Summa ◽  
Sonja Van den Oudenrijn ◽  
Carlijn Voermans ◽  
C.Ellen Van der Schoot ◽  
...  

Abstract Congenital amegakaryocytic thrombocytopenia (CAMT) is a rare disorder that presents with severe thrombocytopenia and absence of megakaryocytes in the bone marrow. The disease may develop into bone marrow aplasia. In vitro, CD34-positive hematopoietic progenitor cells from CAMT patients did not show any megakaryocyte formation in a Tpo-driven expansion culture. We and others found genetic defects in the gene encoding the Tpo receptor, c-mpl (Van den Oudenrijn et al., Br J Haematol.2002, 117: 390–398 and Ballmaier et al., Ann N Y Acad Sci.2003, 996: 17–25). In our patients, we found four mutations that predicted amino-acid substitutions, of which three in the extracellular domain; Arg102Pro, Pro136His and Arg257Cys, and one in the intracellular signaling domain (Pro635Leu), which may result in either defective Tpo-binding and/or signaling. To investigate this, we transfected full-length Mpl (wt and mutants) into the erythroleukemic cell line K562 and truncated Mpl (encompassing the extracellular domain; wt and mutants) into Baby Hamster Kidney (BHK) cells. In the K562 cells, the mRNA level (RQ-PCR) of the Pro136His mutant was severely decreased compared to the wt transfectant, while the mRNA level of the other mutants was comparable to that of wt. On Western blot, wt Mpl migrated as two, presumably differently glycosylated, bands of 75 kD and 72 kD. The mutants showed an altered migration pattern, which might result from differences in glycosylation. With the Pro635Leu mutant lower signals were obtained when equal amounts of total protein were loaded. Since the Mpl mRNA level was comparable to that of wt, this suggests a higher level of protein degradation. Upon transfection of the Arg102Pro and the Arg257Cys mutants in BHK cells, we observed that these mutants did not gain endo-H resistency, which suggests an aberrant processing of these mutant Mpls through the Golgi apparatus and retention in the ER. However, in cell fractionation experiments with surface-biotinylated K562 cells, biotinylated wt Mpl and mutant Mpl (except Pro136His) could be detected. Apparently, in K562 cells, the amino-acid substitutions do not impair membrane expression completely. To examine whether the mutant receptors were still able to signal after Tpo incubation, K562 cells were serum-starved and subsequently stimulated with 50 ng/ml rhTpo for 5 to 30 minutes. All mutants, including Pro136His, showed increased ERK phosphorylation after 5 minutes. To summarize, the Pro136His mutant is hardly expressed in the K562 expression model, presumably because of instability of the mRNA, but is still able to induce signaling. In contrast to the results obtained in the BHK model, the Arg102Pro and Arg257Cys mutants, showed cell-surface expression in the K562 cell line. The obtained cell-surface expression in the K562 model may have been significantly increased compared to the in vivo situation on hematopoietic stem cells, because of artificially induced efficient expression. Finally, with a super-physiological concentration of rhTpo, we obtained evidence that all Mpl mutants were able to signal upon Tpo binding. Whether impaired signaling by the Mpl mutants in the presence of physiological levels of Tpo may contribute to the development of CAMT, will be investigated.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1211-1211
Author(s):  
Jasper C. Lin ◽  
Jason T. Schuman ◽  
Shannon L. Meeks ◽  
John F. Healey ◽  
Arthur R. Thompson ◽  
...  

Abstract The most troublesome clinical complication that can afflict hemophilia A patients who receive factor VIII (FVIII) infusions as replacement therapy is the development of an anti-FVIII immune response, in which antibodies bind to functionally important FVIII surfaces, thereby blocking the pro-coagulant function of this important plasma protein cofactor. These antibodies, commonly referred to as “FVIII inhibitors”, bind primarily to the FVIII A2 and C2 domains and to the C-terminal region of the C1 domain, and inhibitors mapping to other regions have also been seen. There are multiple epitopes on the FVIII C2 domain, reflecting both its immunogenicity/antigenicity and its diverse roles in mediating interactions between FVIII and other molecules. For example, the C2 domain is essential for binding of FVIII to its carrier protein von Willebrand factor (VWF). Proteolytic activation to FVIIIa causes its release from VWF and subsequent binding to negatively charged membrane surfaces, e.g. on activated platelets, whereupon a region that overlaps the VWF binding site contacts the membrane. The C2 domain also interacts with thrombin and factor Xa, which both can activate FVIII. To better understand the basis for FVIII inhibition, and to better delineate functionally important FVIII surfaces, a panel of 56 murine anti-C2 monoclonal antibodies was generated. Competition ELISAs and functional assays were used to classify the antibodies into five groups corresponding to distinct regions on the C2 surface, which comprised a larger number of distinct epitopes (Meeks et al., Blood110, 4234–42, 2007). The present study is a high-resolution mapping of the epitopes recognized by six representative antibodies (2-77, 2-117, 3D12, 3E6, I109 and I54) using surface plasmon resonance (SPR). Each antibody was immobilized covalently via amine coupling to a CM5 chip or was captured by a rat anti-mouse IgG attached covalently to a CM5 chip. Referring to the FVIII C2 domain crystal structure (Pratt et al., Nature402, 439–42, 1999), surface-exposed amino acids were selected for mutagenesis using the Stratagene Quik-Change system, and C2 constructs with single substitutions to alanine or amino acids that were structurally similar to the wild-type residues were generated. Forty-five of these proteins were expressed in E. coli and purified; their purity and structural integrity were confirmed by SDS-PAGE and Western blot analysis. The on- and off-rates for binding of these proteins to the six monoclonal antibodies were determined using a Biacore T100 instrument. Mutations that affected binding significantly were analyzed by measuring association and dissociation constants over a temperature gradient (10–40°C), yielding estimates of changes in antibody-binding energy (ΔΔGº) of these mutant proteins compared to wild-type C2. Van’t Hoff analysis was carried out to determine the relative contributions of enthalpy and entropy to the binding energies. Interestingly, C2 binding to each antibody was abrogated by 1–5 of the 45 amino acid substitutions tested. Each of these C2 mutants bound to other antibodies with affinities similar to that of wild-type C2, indicating that this was not an artifact due to protein misfolding. The following substitutions resulted in little or no binding, as evidenced by a completely abated signal (very low Rmax compared to the wild-type C2 protein): L2273A (2-77, 2-117), R2220A (3D12, I109), Q2231A (I54) and T2272A (I109). Additional mutant proteins with reduced binding to inhibitor(s) displayed markedly higher dissociation constants and sometimes less pronounced differences in association constants compared to wild-type C2. Although several FVIII residues contributed to more than one epitope, each antibody had a unique epitope map profile. Our results suggest that a limited number of amino acid substitutions could produce a modified FVIII protein capable of eluding immunodominant inhibitors. This approach could eventually find clinical application as a novel strategy to achieve hemostasis in patients with an established FVIII inhibitor.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Kuanxiang Sun ◽  
Wanli Tian ◽  
Xiao Li ◽  
Wenjing Liu ◽  
Yeming Yang ◽  
...  

Phosphatidylserine flippase (P4-ATPase) transports PS from the outer to the inner leaflet of the lipid bilayer in the membrane to maintain PS asymmetry, which is important for biological activities of the cell. ATP11A is expressed in multiple tissues and plays a role in myotube formation. However, the detailed cellular function of ATP11A remains elusive. Mutation analysis revealed that I91, L308, and E897 residues in ATP8A2 are important for flippase activity. In order to investigate the roles of these corresponding amino acid residues in ATP11A protein, we assessed the expression and cellular localization of the respective ATP11A mutant proteins. ATP11A mainly localizes to the Golgi and plasma membrane when coexpressed with the β-subunit of the complex TMEM30A. Y300F mutation causes reduced ATP11A expression, and Y300F and D913K mutations affect correct localization of the Golgi and plasma membrane. In addition, Y300F and D913K mutations also affect PS flippase activity. Our data provides insight into important residues of ATP11A.


2003 ◽  
Vol 69 (9) ◽  
pp. 5343-5353 ◽  
Author(s):  
Mohd Amir F. Abdullah ◽  
Oscar Alzate ◽  
Marwan Mohammad ◽  
Rebecca J. McNall ◽  
Michael J. Adang ◽  
...  

ABSTRACT Bacillus thuringiensis mosquitocidal toxin Cry4Ba has no significant natural activity against Culex quinquefasciatus or Culex pipiens (50% lethal concentrations [LC50], >80,000 and >20,000 ng/ml, respectively). We introduced amino acid substitutions in three putative loops of domain II of Cry4Ba. The mutant proteins were tested on four different species of mosquitoes, Aedes aegypti, Anopheles quadrimaculatus, C. quinquefasciatus, and C. pipiens. Putative loop 1 and 2 exchanges eliminated activity towards A. aegypti and A. quadrimaculatus. Mutations in a putative loop 3 resulted in a final increase in toxicity of >700-fold and >285-fold against C. quinquefasciatus (LC50 ≅ 114 ng/ml) and C. pipiens (LC50 ⩬ 37 ng/ml), respectively. The enhanced protein (mutein) has very little negative effect on the activity against Anopheles or Aedes. These results suggest that the introduction of short variable sequences of the loop regions from one toxin into another might provide a general rational design approach to enhancing B. thuringiensis Cry toxins.


2007 ◽  
Vol 18 (8) ◽  
pp. 3068-3080 ◽  
Author(s):  
Elsa Lauwers ◽  
Guido Grossmann ◽  
Bruno André

Current models for plasma membrane organization integrate the emerging concepts that membrane proteins tightly associate with surrounding lipids and that biogenesis of surface proteins and lipids may be coupled. We show here that the yeast general amino acid permease Gap1 synthesized in the absence of sphingolipid (SL) biosynthesis is delivered to the cell surface but undergoes rapid and unregulated down-regulation. Furthermore, the permease produced under these conditions but blocked at the cell surface is inactive, soluble in detergent, and more sensitive to proteases. We also show that SL biogenesis is crucial during Gap1 production and secretion but that it is dispensable once Gap1 has reached the plasma membrane. Moreover, the defects displayed by cell surface Gap1 neosynthesized in the absence of SL biosynthesis are not compensated by subsequent restoration of SL production. Finally, we show that down-regulation of Gap1 caused by lack of SL biogenesis involves the ubiquitination of the protein on lysines normally not accessible to ubiquitination and close to the membrane. We propose that coupled biogenesis of Gap1 and SLs would create an SL microenvironment essential to the normal conformation, function, and control of ubiquitination of the permease.


2000 ◽  
Vol 80 (3) ◽  
pp. 1083-1105 ◽  
Author(s):  
Antonio De la Vieja ◽  
Orsolya Dohan ◽  
Orlie Levy ◽  
Nancy Carrasco

The Na+/I−symporter (NIS) is an intrinsic membrane protein that mediates the active transport of iodide into the thyroid and other tissues, such as salivary glands, gastric mucosa, and lactating mammary gland. NIS plays key roles in thyroid pathophysiology as the route by which iodide reaches the gland for thyroid hormone biosynthesis and as a means for diagnostic scintigraphic imaging and for radioiodide therapy in hyperthyroidism and thyroid cancer. The molecular characterization of NIS started with the 1996 isolation of a cDNA encoding rat NIS and has since continued at a rapid pace. Anti-NIS antibodies have been prepared and used to study NIS topology and its secondary structure. The biogenesis and posttranslational modifications of NIS have been examined, a thorough electrophysiological analysis of NIS has been conducted, the cDNA encoding human NIS (hNIS) has been isolated, the genomic organization of hNIS has been elucidated, the regulation of NIS by thyrotropin and I− has been analyzed, the regulation of NIS transcription has been studied, spontaneous NIS mutations have been identified as causes of congenital iodide transport defect resulting in hypothyroidism, the roles of NIS in thyroid cancer and thyroid autoimmune disease have been examined, and the expression and regulation of NIS in extrathyroidal tissues have been investigated. In gene therapy experiments, the rat NIS gene has been transduced into various types of human cells, which then exhibited active iodide transport and became susceptible to destruction with radioiodide. The continued molecular analysis of NIS clearly holds the potential of an even greater impact on a wide spectrum of fields, ranging from structure/function of transport proteins to the diagnosis and treatment of cancer, both in the thyroid and beyond.


Sign in / Sign up

Export Citation Format

Share Document