scholarly journals Regulation of the Rat Thyrotropin Receptor Gene by the Methylation-Sensitive Transcription Factor GA-Binding Protein

1998 ◽  
Vol 12 (8) ◽  
pp. 1241-1249 ◽  
Author(s):  
Norihiko Yokomori ◽  
Masato Tawata ◽  
Tukasa Saito ◽  
Hiroki Shimura ◽  
Toshimasa Onaya

Abstract The GA-binding protein (GABP), a transcription factor with a widespread tissue distribution, consists of two subunits,α and β1, and acts as a potent positive regulator of various genes. The effect of GABP on transcription of the TSH receptor (TSHR) gene in rat FRTL-5 thyroid cells has now been investigated. Both deoxyribonuclease I footprint analysis and gel mobility-shift assays indicated that bacterially expressed glutathione S-transferase fusion proteins of GABP subunits bind to a region spanning nucleotides (nt) −116 to −80 of the TSHR gene. In gel mobility-shift assays, nuclear extracts of FRTL-5 cells and FRT cells yielded several specific bands with a probe comprising nt −116 to− 80. Supershift assays with antibodies to GABPα and to GABPβ1 showed that GABP was a component of the probe complexes formed by the nuclear extracts. Immunoblot analysis confirmed the presence of both GABP subunits in the nuclear extracts. A reporter gene construct containing the TSHR gene promoter was activated, in a dose-dependent manner, in FRTL-5 cells by cotransfection with constructs encoding both GABPα and GABPβ1. Both GABP binding to and activation of the TSHR gene promoter were prevented by methylation of CpG sites at nt −93 and− 85. These CpG sites were highly methylated (>82%) in FRT cells and completely demethylated in FRTL-5 cells, consistent with expression of the TSHR gene in the latter, but not the former. These results suggest that GABP regulates transcription of the TSHR gene in a methylation-dependent manner and that methylation of specific CpG sites and the methylation sensitivity of GABP contribute to the failure of FRT cells to express the endogenous TSHR gene.

1999 ◽  
Vol 112 (21) ◽  
pp. 3691-3702 ◽  
Author(s):  
W.L. Severt ◽  
T.U. Biber ◽  
X. Wu ◽  
N.B. Hecht ◽  
R.J. DeLorenzo ◽  
...  

Ribonucleoprotein particles (RNPs) are thought to be key players in somato-dendritic sorting of mRNAs in CNS neurons and are implicated in activity-directed neuronal remodeling. Here, we use reporter constructs and gel mobility shift assays to show that the testis brain RNA-binding protein (TB-RBP) associates with mRNPs in a sequence (Y element) dependent manner. Using antisense oligonucleotides (anti-ODN), we demonstrate that blocking the TB-RBP Y element binding site disrupts and mis-localizes mRNPs containing (alpha)-calmodulin dependent kinase II (alpha)-CAMKII) and ligatin mRNAs. In addition, we show that suppression of kinesin heavy chain motor protein alters only the localization of (alpha)-CAMKII mRNA. Thus, differential sorting of mRNAs involves multiple mRNPs and selective motor proteins permitting localized mRNAs to utilize common mechanisms for shared steps.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2607-2607
Author(s):  
Rahul Garhwal ◽  
Zhong-Fa Yang ◽  
Alan G. Rosmarin ◽  
Peter Gaines

Abstract Abstract 2607 Pelger-Huët anomaly (PHA) is a disorder of neutrophil nuclear lobulation, in which mature human granulocytes have a mononuclear or bilobed nucleus (so-called pince-nez cells). PHA is a congenital human disorder, but nuclear hypolobation also arises as an acquired defect in pre-leukemic myelodysplastic syndromes. Lamin B receptor (LBR) is an inner nuclear membrane protein whose expression increases during myeloid differentiation, and loss of LBR expression causes PHA. We sought to examine the regulation of LBR in order to identify molecular mechanisms that contribute to neutrophil disorders, including myelodysplastic syndromes and acute myelogenous leukemia. Many hematopoietic-specific genes are regulated by the combinatorial activity of transcription factors, including the ETS factors, PU.1 and GABP (GA binding protein). GABP and PU.1 cooperate to regulate the expression of the leukocyte adhesion molecule CD18, and recently were shown to regulate the expression of the interleukin-7 receptor in developing B cells. GABP is an obligate heterotetramer that is composed of two structurally dissimilar proteins, GABPα and GABPβ. Our analysis of the Lbr gene promoter identified classic “GAGGAA” ets consensus sequences located proximal and distal to the Lbr transcription start site. Lbr promoter constructs containing either the proximal ets site or both the proximal and distal ets sites were not activated by PU.1, alone, following transfection into COS cells. However, these constructs were activated by co-expression of GABPα plus GABPβ, and combined expression of GABPα/β plus PU.1 further activated these constructs up to two-fold. This suggests that GABP and PU.1 cooperatively activate the Lbr gene promoter. Electrophoretic mobility shift assays (EMSA) using radiolabeled probes that include the distal or proximal putative ets sites and nuclear extracts from HEK-293 cells transfected with expression vectors for GABPα, GABPβ and PU.1, identified multiple low mobility bands that were competed by 100 fold excess of cold competitor probe, but not by an irrelevant control probe. Inclusion of anti-GABPα antibodies in the binding reaction disrupted mobility shifts of the probes, indicating that GABPα directly interacts with the Lbr promoter and may participate in the formation of a multimeric protein complex that binds the promoter. Similar results were observed with nuclear extracts from EML cells, which correspond to murine hematopoietic progenitor cells that can be induced to differentiate toward promyelocytic EPRO cells and thence to mature granulocytes. We examined protein expression of GABPα in HL-60 and EML/EPRO progenitor cells, and found that GABPα is highly expressed in uninduced progenitors but downregulated during either neutrophil or monocyte differentiation. We generated mice in which loxP recombination sites flank critical exons of Gabpa; in the presence of Cre recombinase the loxP sites undergo rearrangement and Gabpa is deleted. We bred these animals to mice that are transgenic for estrogen receptor (ER)-regulated Cre recombinase, and created a novel EML cell line from their bone marrow. Upon activating Cre expression with 4-hydroxytamoxifen, most EML cells died within 24 hours, as compared to control cells. This result is consistent with previous studies demonstrating that GABP is required for cell cycle progression, and suggests that GABP plays a critical role in myeloid cell survival. Together, our data indicate that the GABP tetramer binds to specific sequences of the Lbr promoter, and that GABP cooperates with PU.1 to drive Lbr expression during neutrophil differentiation. Analysis of promoter constructs with mutated ets sites in our reporter assays and mobility shift assays will further our knowledge about the importance of GABP/PU.1 complexes in Lbr gene regulation. EML cells that can undergo conditional deletion of Gabpa provide a powerful tool for analysis of the regulation of myeloid genes such as Lbr, and for the molecular mechanisms that cause disorders of myeloid maturation, including myelodysplastic syndromes and acute myelogenous leukemia. Disclosures: No relevant conflicts of interest to declare.


2005 ◽  
Vol 19 (3) ◽  
pp. 759-770 ◽  
Author(s):  
Beate Ritz-Laser ◽  
Aline Mamin ◽  
Thierry Brun ◽  
Isabelle Avril ◽  
Valérie M. Schwitzgebel ◽  
...  

Abstract Gene inactivation studies have shown that members of the Gata family of transcription factors are critical for endoderm development throughout evolution. We show here that Gata-4 and/or Gata-6 are not only expressed in the adult exocrine pancreas but also in glucagonoma and insulinoma cell lines, whereas Gata-5 is restricted to the exocrine pancreas. During pancreas development, Gata-4 is expressed already at embryonic d 10.5 and colocalizes with early glucagon+ cells at embryonic d 12.5. Gata-4 was able to transactivate the glucagon gene both in heterologous BHK-21 (nonislet Syrian baby hamster kidney) and in glucagon-producing InR1G9 cells. Using gel-mobility shift assays, we identified a complex formed with nuclear extracts from InR1G9 cells on the G5 control element (−140 to −169) of the glucagon gene promoter as Gata-4. Mutation of the GATA binding site on G5 abrogated the transcriptional activation mediated by Gata-4 and reduced basal glucagon gene promoter activity in glucagon-producing cells by 55%. Furthermore, Gata-4 acted more than additively with Forkhead box A (hepatic nuclear factor-3) to trans-activate the glucagon gene promoter. We conclude that, besides its role in endoderm differentiation, Gata-4 might be implicated in the regulation of glucagon gene expression in the fetal pancreas and that Gata activity itself may be modulated by interactions with different cofactors.


1991 ◽  
Vol 11 (4) ◽  
pp. 2216-2228
Author(s):  
E Spanopoulou ◽  
V Giguere ◽  
F Grosveld

The Thy-1 gene promoter resembles a "housekeeping" promoter in that it is located within a methylation-free island, lacks a canonical TATA box, and displays heterogeneity in the 5'-end termini of the mRNA. Using transgenic mice, we show that this promoter does not confer any tissue specificity and is active only in a position-dependent manner. It can only be activated in a tissue-specific manner by elements that lie downstream of the initiation site. We have analyzed the functional domains of the minimal Thy-1 promoter and show that the dominant promoter elements consist of multiple binding sites for the transcription factor Sp1, an inverted CCAAT box, and sequences proximal to the transcription start site. DNase I and gel mobility shift assays show the binding of a number of nuclear factors to these elements, including Sp1 and CP1. Our results show that the structure of this promoter only permits productive interactions of the two transcription factors Sp1 and CP1 with the basal transcription machinery in the presence of enhancer sequences.


1991 ◽  
Vol 11 (4) ◽  
pp. 2216-2228 ◽  
Author(s):  
E Spanopoulou ◽  
V Giguere ◽  
F Grosveld

The Thy-1 gene promoter resembles a "housekeeping" promoter in that it is located within a methylation-free island, lacks a canonical TATA box, and displays heterogeneity in the 5'-end termini of the mRNA. Using transgenic mice, we show that this promoter does not confer any tissue specificity and is active only in a position-dependent manner. It can only be activated in a tissue-specific manner by elements that lie downstream of the initiation site. We have analyzed the functional domains of the minimal Thy-1 promoter and show that the dominant promoter elements consist of multiple binding sites for the transcription factor Sp1, an inverted CCAAT box, and sequences proximal to the transcription start site. DNase I and gel mobility shift assays show the binding of a number of nuclear factors to these elements, including Sp1 and CP1. Our results show that the structure of this promoter only permits productive interactions of the two transcription factors Sp1 and CP1 with the basal transcription machinery in the presence of enhancer sequences.


2001 ◽  
Vol 353 (2) ◽  
pp. 307-316 ◽  
Author(s):  
Luciana E. GIONO ◽  
Cecilia L. VARONE ◽  
Eduardo T. CÁNEPA

The first and rate-controlling step of the haem biosynthetic pathway in mammals and fungi is catalysed by the mitochondrial-matrix enzyme 5-aminolaevulinate synthase (ALAS). The purpose of this work was to explore the molecular mechanisms involved in the cAMP regulation of rat housekeeping ALAS gene expression. Thus we have examined the ALAS promoter for putative transcription-factor-binding sites that may regulate transcription in a cAMP-dependent protein kinase (PKA)-induced context. Applying both transient transfection assays with a chloramphenicol acetyltransferase reporter gene driven by progressive ALAS promoter deletions in HepG2, and electrophoresis mobility-shift assays we have identified two putative cAMP-response elements (CREs) at positions -38 and -142. Functional analysis showed that both CRE-like sites were necessary for complete PKA induction, but only one for basal expression. Co-transfection with a CRE-binding protein (CREB) expression vector increased PKA-mediated induction of ALAS promoter transcriptional activity. However, in the absence of co-transfected PKA, CREB worked as a specific repressor for ALAS promoter activity. A CREB mutant deficient in a PKA phosphorylation site was unable to induce expression of the ALAS gene but could inhibit non-stimulated promoter activity. Furthermore, a DNA-binding mutant of CREB did not interfere with ALAS promoter basal activity. Site-directed-mutagenesis studies showed that only the nearest element to the transcription start site was able to inhibit the activity of the promoter. Therefore, we conclude that CREB, through its binding to CRE-like sites, mediates the effect of cAMP on ALAS gene expression. Moreover, we propose that CREB could also act as a repressor of ALAS transcription, but is able to reverse its role after PKA activation. Dephosphorylated CREB would interfere in a spatial-disposition-dependent manner with the transcriptional machinery driving inhibition of gene expression.


1999 ◽  
Vol 19 (10) ◽  
pp. 6788-6795 ◽  
Author(s):  
Masahito Shimojo ◽  
Alice J. Paquette ◽  
David J. Anderson ◽  
Louis B. Hersh

ABSTRACT The role of protein kinase A in regulating transcription of the cholinergic gene locus, which contains both the vesicular acetylcholine transporter gene and the choline acetyltransferase gene, was investigated in PC12 cells and a protein kinase A-deficient PC12 mutant, A126.1B2, in which transcription of the gene is reduced. The site of action of protein kinase A was localized to a neuron-restrictive silencer element/repressor element 1 (NRSE/RE-1) sequence within the cholinergic gene. Neuron-restrictive silencer factor (NRSF)/RE-1-silencing transcription factor (REST), the transcription factor which binds to NRSE/RE-1, was expressed at similar levels in both PC12 and A126.1B2 cells. Although nuclear extracts containing NRSF/REST from A126.1B2 exhibited binding to NRSE/RE-1, nuclear extracts from PC12 cells did not. The NRSF/REST isoform REST4 was expressed in PC12 cells but not in A126.1B2. REST4 inhibited binding of NRSF/REST to NRSE/RE-1 as determined by gel mobility shift assays. Coimmunoprecipitation was used to demonstrate interaction between NRSF/REST and REST4. Expression of recombinant REST4 in A126.1B2 was sufficient to transcriptionally activate the cholinergic gene locus. Thus, in PC12 cells, protein kinase A promotes the production of REST4, which inhibits repression of the cholinergic gene locus by NRSF/REST.


1998 ◽  
Vol 12 (5) ◽  
pp. 727-736 ◽  
Author(s):  
Masayuki Ohmori ◽  
Toyoshi Endo ◽  
Norikazu Harii ◽  
Toshimasa Onaya

Abstract The stimulation of iodide (I−) transport by TSH in FRTL-5 thyroid cells is partly due to an increase in Na+/I− symporter (NIS) gene expression. The identification of a TSH-responsive element (TRE) in the NIS promoter and its relationship to the action of thyroid transcription factor-1 (TTF-1) on the promoter are the subjects of this report. By transfecting NIS promoter-luciferase chimeric plasmids into FRTL-5 cells in the presence or absence of TSH, we identify a TRE between −420 and −370 bp of the NIS 5′-flanking region. Nuclear extracts from FRTL-5 cells cultured in the absence of TSH form two groups of protein-DNA complexes, A and B, in gel mobility shift assays using an oligonucleotide having the sequence from −420 to −385 bp. Only the A complex is increased by exposure of FRTL-5 cells to TSH or forskolin. The addition of TSH to FRTL-5 cells can increase the A complex at 3–6 h, reaching a maximum at 12 h. FRTL-5, but not nonfunctioning FRT thyroid or Buffalo rat liver (BRL) cell nuclear extracts, form the A complex. The TSH-increased nuclear factor in FRTL-5 cells interacting with the NIS TRE is distinct from TTF-1, thyroid transcription factor-2, or Pax-8, as evidenced by the absence of competition using oligonucleotides specific for these factors in gel shift assays. Neither is it the nuclear protein interacting with cAMP response element. The TRE is in the upstream of a TTF-1-binding site,− 245 to −230 bp. Mutation of the TRE causing a loss of TSH responsiveness also decreases TTF-1-induced promoter activity in a transfection experiment. The formation of the A complex between FRTL-5 nuclear extracts and the NIS TRE is redox-regulated. In sum, TSH/cAMP-induced up-regulation of the NIS requires a novel thyroid transcription factor, which also appears to be involved in TTF-1-mediated thyroid-specific NIS gene expression.


1997 ◽  
Vol 11 (11) ◽  
pp. 1651-1658 ◽  
Author(s):  
Limin Liu ◽  
Douglas Leaman ◽  
Michel Villalta ◽  
R. Michael Roberts

Abstract CG is required for maintenance of the corpus luteum during pregnancy in higher primates. As CG is a heterodimeric molecule, some form of coordinated control must be maintained over the transcription of its two subunit genes. We recently found that expression of human CG β-subunit (hCGβ) in JAr human choriocarcinoma cells was almost completely silenced by the embryonic transcription factor Oct-3/4, which bound to a unique ACAATAATCA octameric sequence in the hCGβ gene promoter. Here we report that Oct-3/4 is also a potent inhibitor of hCG α-subunit (hCGα) expression in JAr cells. Oct-3/4 reduced human GH reporter expression from the −170 hCGα promoter in either the presence or absence of cAMP by about 70% in transient cotransfection assays, but had no effect on expression from either the −148 hCGα or the −99 hCGα promoter. Unexpectedly, no Oct-3/4-binding site was identified within the −170 to −148 region of the hCGα promoter, although one was found around position −115 by both methylation interference footprinting and electrophoretic mobility shift assays. Site-directed mutagenesis of this binding site destroyed the affinity of the promoter for Oct-3/4, but did not affect repression of the promoter. Therefore, inhibition of hCGα gene transcription by Oct-3/4 appears not to involve direct binding of this factor to the site responsible for silencing. When stably transfected into JAr cells, Oct-3/4 reduced the amounts of both endogenous hCGα mRNA and protein by 70–80%. Oct-3/4 is therefore capable of silencing both hCGα and hCGβ gene expression. We suggest that as the trophoblast begins to form, reduction of Oct-3/4 expression permits the coordinated onset of transcription from the hCGα and hCGβ genes.


Sign in / Sign up

Export Citation Format

Share Document