scholarly journals Both cladribine and alemtuzumab may effect MS via B-cell depletion

2017 ◽  
Vol 4 (4) ◽  
pp. e360 ◽  
Author(s):  
David Baker ◽  
Samuel S. Herrod ◽  
Cesar Alvarez-Gonzalez ◽  
Lukasz Zalewski ◽  
Christo Albor ◽  
...  

Objective:To understand the efficacy of cladribine (CLAD) treatment in MS through analysis of lymphocyte subsets collected, but not reported, in the pivotal phase III trials of cladribine and alemtuzumab induction therapies.Methods:The regulatory submissions of the CLAD Tablets Treating Multiple Sclerosis Orally (CLARITY) (NCT00213135) cladribine and Comparison of Alemtuzumab and Rebif Efficacy in Multiple Sclerosis, study one (CARE-MS I) (NCT00530348) alemtuzumab trials were obtained from the European Medicine Agency through Freedom of Information requests. Data were extracted and statistically analyzed.Results:Either dose of cladribine (3.5 mg/kg; 5.25 mg/kg) tested in CLARITY reduced the annualized relapse rate to 0.16–0.18 over 96 weeks, and both doses were similarly effective in reducing the risk of MRI lesions and disability. Surprisingly, however, T-cell depletion was rather modest. Cladribine 3.5 mg/kg depleted CD4+ cells by 40%–45% and CD8+ cells by 15%–30%, whereas alemtuzumab suppressed CD4+ cells by 70%–95% and CD8+ cells by 47%–55%. However, either dose of cladribine induced 70%–90% CD19+ B-cell depletion, similar to alemtuzumab (90%). CD19+ cells slowly repopulated to 15%–25% of baseline before cladribine redosing. However, alemtuzumab induced hyperrepopulation of CD19+ B cells 6–12 months after infusion, which probably forms the substrate for B-cell autoimmunities associated with alemtuzumab.Conclusions:Cladribine induced only modest depletion of T cells, which may not be consistent with a marked influence on MS, based on previous CD4+ T-cell depletion studies. The therapeutic drug-response relationship with cladribine is more consistent with lasting B-cell depletion and, coupled with the success seen with monoclonal CD20+ depletion, suggests that B-cell suppression could be the major direct mechanism of action.

2019 ◽  
Vol 332 ◽  
pp. 187-197 ◽  
Author(s):  
Amy E. Lovett-Racke ◽  
Matthew Gormley ◽  
Yue Liu ◽  
Yuhong Yang ◽  
Calsey Graham ◽  
...  

Neurology ◽  
2021 ◽  
pp. 10.1212/WNL.0000000000012754
Author(s):  
Joep Killestein ◽  
Menno M. Schoonheim ◽  
Rhonda R. Voskuhl

2005 ◽  
Vol 55 (5) ◽  
pp. 503-514 ◽  
Author(s):  
Bernd Schlereth ◽  
Cornelia Quadt ◽  
Torsten Dreier ◽  
Peter Kufer ◽  
Grit Lorenczewski ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Asuka Tanaka ◽  
Kentaro Ide ◽  
Yuka Tanaka ◽  
Masahiro Ohira ◽  
Hiroyuki Tahara ◽  
...  

AbstractPretransplant desensitization with rituximab has been applied to preformed donor-specific anti-human leukocyte antigen antibody (DSA)-positive recipients for elimination of preformed DSA. We investigated the impact of pretransplant desensitization with rituximab on anti-donor T cell responses in DSA-positive transplant recipients. To monitor the patients’ immune status, mixed lymphocyte reaction (MLR) assays were performed before and after desensitization with rituximab. Two weeks after rituximab administration, the stimulation index (SI) of anti-donor CD4+ T cells was significantly higher in the DSA-positive recipients than in the DSA-negative recipients. To investigate the mechanisms of anti-donor hyper responses of CD4+ T cells after B cell depletion, highly sensitized mice models were injected with anti-CD20 mAb to eliminate B cells. Consistent with clinical observations, the SI values of anti-donor CD4+ T cells were significantly increased after anti-CD20 mAb injection in the sensitized mice models. Adding B cells isolated from untreated sensitized mice to MLR significantly inhibited the enhancement of anti-donor CD4+ T cell response. The depletion of the CD5+ B cell subset, which exclusively included IL-10-positive cells, from the additive B cells abrogated such inhibitory effects. These findings demonstrate that IL-10+ CD5+ B cells suppress the excessive response of anti-donor CD4+ T cells responses in sensitized recipients.


2019 ◽  
Vol 11 (482) ◽  
pp. eaav1648 ◽  
Author(s):  
Rita Kansal ◽  
Noah Richardson ◽  
Indira Neeli ◽  
Saleem Khawaja ◽  
Damian Chamberlain ◽  
...  

The failure of anti-CD20 antibody (Rituximab) as therapy for lupus may be attributed to the transient and incomplete B cell depletion achieved in clinical trials. Here, using an alternative approach, we report that complete and sustained CD19+ B cell depletion is a highly effective therapy in lupus models. CD8+ T cells expressing CD19-targeted chimeric antigen receptors (CARs) persistently depleted CD19+ B cells, eliminated autoantibody production, reversed disease manifestations in target organs, and extended life spans well beyond normal in the (NZB × NZW) F1 and MRLfas/fas mouse models of lupus. CAR T cells were active for 1 year in vivo and were enriched in the CD44+CD62L+ T cell subset. Adoptively transferred splenic T cells from CAR T cell–treated mice depleted CD19+ B cells and reduced disease in naive autoimmune mice, indicating that disease control was cell-mediated. Sustained B cell depletion with CD19-targeted CAR T cell immunotherapy is a stable and effective strategy to treat murine lupus, and its effectiveness should be explored in clinical trials for lupus.


2015 ◽  
Vol 16 (2) ◽  
pp. 672-678 ◽  
Author(s):  
J. Marino ◽  
J. T. Paster ◽  
A. Trowell ◽  
L. Maxwell ◽  
K. H. Briggs ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document