Faculty Opinions recommendation of Outcome of children with acute leukemia given HLA-haploidentical HSCT after αβ T-cell and B-cell depletion.

Author(s):  
Nelson Chao
Blood ◽  
2017 ◽  
Vol 130 (5) ◽  
pp. 677-685 ◽  
Author(s):  
Franco Locatelli ◽  
Pietro Merli ◽  
Daria Pagliara ◽  
Giuseppina Li Pira ◽  
Michela Falco ◽  
...  

Key Points Children with AL given haplo-HSCT after αβ T- and B-cell depletion are exposed to a low risk of acute and chronic GVHD and NRM. The leukemia-free, GVHD-free survival of patients given this type of allograft is comparable to that of HLA-matched donor HSCT recipients.


2005 ◽  
Vol 55 (5) ◽  
pp. 503-514 ◽  
Author(s):  
Bernd Schlereth ◽  
Cornelia Quadt ◽  
Torsten Dreier ◽  
Peter Kufer ◽  
Grit Lorenczewski ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Asuka Tanaka ◽  
Kentaro Ide ◽  
Yuka Tanaka ◽  
Masahiro Ohira ◽  
Hiroyuki Tahara ◽  
...  

AbstractPretransplant desensitization with rituximab has been applied to preformed donor-specific anti-human leukocyte antigen antibody (DSA)-positive recipients for elimination of preformed DSA. We investigated the impact of pretransplant desensitization with rituximab on anti-donor T cell responses in DSA-positive transplant recipients. To monitor the patients’ immune status, mixed lymphocyte reaction (MLR) assays were performed before and after desensitization with rituximab. Two weeks after rituximab administration, the stimulation index (SI) of anti-donor CD4+ T cells was significantly higher in the DSA-positive recipients than in the DSA-negative recipients. To investigate the mechanisms of anti-donor hyper responses of CD4+ T cells after B cell depletion, highly sensitized mice models were injected with anti-CD20 mAb to eliminate B cells. Consistent with clinical observations, the SI values of anti-donor CD4+ T cells were significantly increased after anti-CD20 mAb injection in the sensitized mice models. Adding B cells isolated from untreated sensitized mice to MLR significantly inhibited the enhancement of anti-donor CD4+ T cell response. The depletion of the CD5+ B cell subset, which exclusively included IL-10-positive cells, from the additive B cells abrogated such inhibitory effects. These findings demonstrate that IL-10+ CD5+ B cells suppress the excessive response of anti-donor CD4+ T cells responses in sensitized recipients.


2019 ◽  
Vol 11 (482) ◽  
pp. eaav1648 ◽  
Author(s):  
Rita Kansal ◽  
Noah Richardson ◽  
Indira Neeli ◽  
Saleem Khawaja ◽  
Damian Chamberlain ◽  
...  

The failure of anti-CD20 antibody (Rituximab) as therapy for lupus may be attributed to the transient and incomplete B cell depletion achieved in clinical trials. Here, using an alternative approach, we report that complete and sustained CD19+ B cell depletion is a highly effective therapy in lupus models. CD8+ T cells expressing CD19-targeted chimeric antigen receptors (CARs) persistently depleted CD19+ B cells, eliminated autoantibody production, reversed disease manifestations in target organs, and extended life spans well beyond normal in the (NZB × NZW) F1 and MRLfas/fas mouse models of lupus. CAR T cells were active for 1 year in vivo and were enriched in the CD44+CD62L+ T cell subset. Adoptively transferred splenic T cells from CAR T cell–treated mice depleted CD19+ B cells and reduced disease in naive autoimmune mice, indicating that disease control was cell-mediated. Sustained B cell depletion with CD19-targeted CAR T cell immunotherapy is a stable and effective strategy to treat murine lupus, and its effectiveness should be explored in clinical trials for lupus.


2015 ◽  
Vol 16 (2) ◽  
pp. 672-678 ◽  
Author(s):  
J. Marino ◽  
J. T. Paster ◽  
A. Trowell ◽  
L. Maxwell ◽  
K. H. Briggs ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 587-587 ◽  
Author(s):  
Omer N. Koc ◽  
Charles Redfern ◽  
Peter H. Wiernik ◽  
Fred Rosenfelt ◽  
Jane N. Winter ◽  
...  

Abstract Background: Id/KLH vaccine (FavId) administered as a single agent has been associated with tumor regressions in patients with relapsed/refractory (RR) FL. B-cell depletion has been demonstrated to augment the T-cell immune response to subsequent vaccine administration in mice (Qin 1998 Nat Med 4:627). Objective: To evaluate the efficacy and safety of Id-KLH administered during the period of rituximab induced B-cell depletion. Eligibility: FL pts who were: treatment naïve (TN); RR following chemotherapy; or relapsed following rituximab. Treatment: Following rituximab (375mg/m2 i.v. weekly x 4) pts received Id-KLH (1 mg s.q. monthly x 6) starting on week 12. GM-CSF, 250 mcg, was administered s.q. at the Id-KLH injection site on days 1–4. Pts could continue Id-KLH until progression. Results: 103 pts received rituximab. Response to rituximab at month 3 was 35% (3-CR; 33-PR). Eleven (11) pts were PD following rituximab (11%). Id/KLH could not be made for 4 pts (4%). Eighty-eight (88) pts were begun on Id-KLH. Among the 45 RR pts, 32 (72%) have not progressed at a median follow-up of 12 months compared with 40% of historical control pts treated with rituximab alone (Witzig 2002 JCO 20:2453). Among the 43 TN pts, 82% have not progressed after a median follow-up of 9 months. RRI (SD to PR, PR to CR after month 3) was observed in 21 pts (12-SD to PR; 9-PR to CR). Robust T-cell responses to both Id and KLH were observed (3 of 3 pts tested). Anti-KLH antibody responses were generally not seen until B-cell recovery. The most frequent adverse event was an injection site reaction. A flu-like syndrome was also observed consistent with GM-CSF administration. Conclusion: Id/KLH vaccine (FavId), administered to pts with FL during a period of B-cell depletion induced by rituximab, can result in an anti-Id T-cell response, and appears to result in an RRI and an increased TTP compared to historical controls. A randomized, double-blind, placebo-controlled, Phase 3 trial of rituximab + FavId has been initiated.


2013 ◽  
Vol 31 (15_suppl) ◽  
pp. 3051-3051 ◽  
Author(s):  
Youssef Hijazi ◽  
Matthias Klinger ◽  
Andrea Schub ◽  
Benjamin Wu ◽  
Min Zhu ◽  
...  

3051 Background: Blinatumomab (AMG 103) is an investigational, bispecific, T cell engaging (BiTE) antibody targeting CD19-expressing B cells. We describe the exposure-pharmacodynamic (PD) response of blinatumomab in patients with NHL, using a quantitative pharmacology approach. Methods: In a phase 1 study, 76 patients with NHL received blinatumomab by continuous intravenous infusion (cIV) at doses of 0.5 to 90 μg/m2/d in 4- or 8-week cycles. Pharmacokinetics (PK) was determined. PD responses evaluated included lymphocytes and cytokines measured during treatment, and sum of the products of the greatest diameters of tumor size in lymph nodes (SPD) at the end of treatment. Blinatumomab concentration at steady state (Css) and the cumulative area under the concentration (AUCcum)–time curve over the period before the evaluation of SPD were used to evaluate the exposure-SPD relationship. Results: Blinatumomab showed linear PK. Early PD responses were characterized by B cell depletion, T cell redistribution, and transient cytokine release. Following cIV at doses from 0.5 to 90 μg/m2/d, B cells declined at a first-order rate with a dose-dependent rate constant, ranging from 0.16 to 1.0 h-1. Complete B cell depletion was achieved within 48 hours at doses ≥5 μg/m2/d. A dose-independent decrease in T cell counts was observed within 24 hours after dosing, and T cells returned to baseline within 2 weeks of treatment. Cytokine elevation occurred in some patients and was dose-dependent. Blinatumomab exposure-SPD relationship was best described by an inhibitory Emax model (E = E0-(Imax*C)/(IC50+C)). According to the model estimation, a 50% reduction in SPD would be achieved when Css is 2141 pg/mL and AUCcum is 1381 h*μg/L, equivalent to a blinatumomab dose of 54 µg/m2/d given over 27 days. Conclusions: B lymphocytes were completely depleted from the circulation at blinatumomab doses ≥5 μg/m2/d. Depletion was faster at higher doses. Higher blinatumomab Css and AUCcum were associated with better tumor reduction. Tissue accessibility may explain the higher dose requirement for SPD reduction versus peripheral B cell depletion. The PK/PD model has utility for the design of future studies of blinatumomab in NHL. Clinical trial information: NCT00274742.


2014 ◽  
Vol 193 (2) ◽  
pp. 746-756 ◽  
Author(s):  
Jacquelyn M. Lykken ◽  
David J. DiLillo ◽  
Eric T. Weimer ◽  
Susanne Roser-Page ◽  
Mark T. Heise ◽  
...  

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2769-2769
Author(s):  
Justine Cunningham ◽  
Sundeep Chandra ◽  
Akinola Emmanuel ◽  
Allyse Mazzarelli ◽  
Carmela Passaro ◽  
...  

Abstract Introduction: Ex vivo manufactured chimeric antigen receptor (CAR) T cell therapies are highly effective for treating B cell malignancies. However, the complexity, cost and time required to manufacture CAR T cells limits access. To overcome conventional ex vivo CAR T limitations, a novel gene therapy platform has been developed that can deliver CAR transgenes directly to T cells through systemic administration of a fusosome, an engineered, target-directed novel paramyxovirus-based integrating vector that binds specific cell surface receptors for gene delivery through membrane fusion. Here, we demonstrate that systemic administration of a CD8a-targeted, integrating vector envelope (i.e., fusogen) encoding an anti-CD20 CAR into Southern pig-tail macaques (M. nemestrina), which is a species permissive to the integrating vector-mediated transduction, results in T cell transduction and B cell depletion with no treatment-related toxicities. Methods: CD8a-specific single chain variable fragments (scFvs) were generated and measured for target specificity versus non-CD8-expressing cells in vitro. Cross-reactivity of the CD8a-specific fusogen for human and nemestrina T cells was confirmed in vitro. Targeted fusogens were then used to pseudotype integrating vector expressing an anti-CD20 CAR containing the 4-1BB and CD3zeta signaling domains (CD8a-anti-CD20CAR). Transduction and B cell killing was confirmed on human and nemestrina PBMCs. To evaluate in vivo activity, normal, healthy nemestrina macaques were treated with a single dose of CD8a-targeted anti-CD20 CAR fusosome (n=6) or saline (n=2) via intravenous infusion at 10mL/kg/hr for 1-hour and evaluated for up to 52 days for evidence of adverse effects, B cell depletion, CAR-mediated cytokine production, CAR T cell persistence and vector biodistribution using ddPCR and anti-CD20CAR transgene by RT-ddPCR to detect transgene levels. Histopathology of several organs and immunohistochemistry for CD3 and CD20 on lymph nodes, spleen, and bone marrow were performed at termination (days 35 and 52). Tolerability of the treatment was assessed by body weight, body temperature, neurological exams, serum chemistry panel, and complete blood counts pre-dose and post-dose up to 52 days. Results: The CD8a-targeted fusogen demonstrated CD8a-specificity versus human CD8 negative cell lines, and cross-reactivity and transduction efficiency in nemestrina PBMCs in vitro. Compared to a control vector (GFP), anti-CD20CAR-modified T cells showed a dose-dependent depletion of B cells using in vitro assays. Following infusion of CD8a-anti-CD20CAR fusosomes into macaques, pharmacological activity in peripheral blood was detected by a reduction of B cells in 4 of 6 animals after 7 to 10 days. Two animals showed persistent B cell depletion until study termination, with two others showing a temporary response. The presence of vector copy could be detected in the peripheral blood of all treated animals between days 3 and 10, and in isolated spleen cells in 5 of 6 animals. All control animals (saline) were negative for vector. RT-ddPCR mRNA expression similarly revealed the presence of anti-CD20CAR transcripts in isolated spleen cells from treated animals; no expression was detected in tissues from control animals. Elevations in inflammatory cytokines could be detected in the serum of treated animals between days 3 and 14. Fusosome treatment was well-tolerated in all animals with no evidence of adverse effects. Moreover, T cell transduction and B cell depletion was not associated with cytokine-related toxicities, and blood chemistry and histopathology were within normal limits. Conclusion: These data obtained in an immunologically competent animal demonstrate the proof-of-concept that systemic administration of a CD8a-anti-CD20CAR fusosome can specifically transduce T cells in vivo without pre-conditioning or T cell activation, resulting in B cell depletion in the absence of vector- or CAR T-related toxicities. Therefore, fusosome technology represents a novel therapeutic opportunity to treat patients with B cell malignancies and potentially overcome some of the treatment barriers that exist with conventional CAR T therapies. Disclosures Cunningham: Sana Biotechnology: Current Employment. Chandra: Sana Biotechnology: Current Employment. Emmanuel: Sana Biotechnology: Current Employment. Mazzarelli: Sana Biotechnology: Current Employment. Passaro: Sana Biotechnology: Current Employment. Baldwin: Sana Biotechnology: Current Employment. Nguyen-McCarty: Sana Biotechnology: Current Employment. Rocca: Sana Biotechnology: Current Employment. Joyce: Sana Biotechnology: Current Employment. Kim: Sana Biotechnology: Current Employment. Vagin: Sana Biotechnology: Current Employment. Kaczmarek: Sana Biotechnology: Current Employment. Chavan: Sana Biotechnology: Current Employment. Jewell: Sana Biotechnology: Current Employment. Lipsitz: Sana Biotechnology: Current Employment. Shamashkin: Sana Biotechnology: Current Employment. Hlavaty: Sana Biotechnology: Current Employment. Rodriguez: Sana Biotechnology: Current Employment. Co: Sana Biotechnology: Current Employment. Cruite: Sana Biotechnology: Current Employment. Ennajdaoui: Sana Biotechnology: Current Employment. Duback: Sana Biotechnology: Current Employment. Elman: Sana Biotechnology: Current Employment. Amatya: Sana Biotechnology: Current Employment. Harding: Sana Biotechnology: Current Employment. Lyubinetsky: Sana Biotechnology: Current Employment. Patel: Sana Biotechnology: Current Employment. Pepper: Sana Biotechnology: Current Employment. Ruzo: Sana Biotechnology: Current Employment. Iovino: Sana Biotechnology: Current Employment. Varghese: Sana Biotechnology: Current Employment. Foster: Sana Biotechnology: Current Employment. Gorovits: Sana Biotechnology: Current Employment. Elpek: Sana Biotechnology: Current Employment. Laska: Sana Biotechnology: Current Employment. McGill: Sana Biotechnology: Current Employment. Shah: Sana Biotechnology: Current Employment. Fry: Sana Biotechnology: Current Employment, Current equity holder in publicly-traded company. Dambach: Sana Biotechnology: Current Employment.


Sign in / Sign up

Export Citation Format

Share Document