Treatment of Acute Focal Cerebral Ischemia with Intermittent, Low Dose Mannitol

Neurosurgery ◽  
1979 ◽  
Vol 5 (6) ◽  
pp. 687-691 ◽  
Author(s):  
John R. Little

Abstract The object of this investigation was to study the effects of intermittent, low dose mannitol therapy on conscious cats after acute left middle cerebral artery (MCA) occlusion. A simple implanted device was applied to the proximal left MCA of 40 adult cats using microsurgical techniques. In the acute experiments, 10 cats were untreated and 10 cats received mannitol (0.5 g/kg intravenously) immediately before occlusion and again 3, 6, and 9 hours later. They subsequently underwent intra-arterial perfusion with colloidal carbon and buffered paraformaldehyde 12 hours after occlusion. The plasma osmolality immediately before perfusion was 316 ± 2 (SD) milliosmoles in untreated cats and 331 ± 5 milliosmoles in treated cats. Gross swelling, impaired carbon filling, and breakdown of the blood-brain barrier (BBB) to fluorescein were seen in the left MCA territory of 8 untreated cats and 1 treated cat. The mean percentage of gray matter cross sectional area where severe ischemic neuronal alterations predominated was 45 ± 12% in untreated and 14 ± 16% in treated cats (p < 0.01). The mean capillary luminal diameter in the left sylvian cortex was 4.5 ± 1.0 μ in untreated cats (control, 6.5 ± 1.0 μ) and 5.5 ± 1.0 μ in treated cats. In the subacute experiments, 10 cats were not treated and 10 cats received mannitol as in the acute experiments. The cats were killed with a large bolus of sodium pentobarbital 48 hours after left MCA occlusion. Gross swelling and breakdown of the BBB were less severe in treated cats. The mean cross sectional area of infarcted tissue was 55 ± 12% in untreated cats and 33 ± 21% in treated cats (p < 1.0). The findings of this study indicate that intermittent, low dose mannitol therapy delays the onset of ischemic cerebral injury and may reduce the size of the eventual infarct or convert a potential infarct into a so-called “transient ischemic attack.”

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Gernot Seppel ◽  
Andreas Voss ◽  
Daniel J. H. Henderson ◽  
Simone Waldt ◽  
Bernhard Haller ◽  
...  

Abstract Background While supraspinatus atrophy can be described according to the system of Zanetti or Thomazeau there is still a lack of characterization of isolated subscapularis muscle atrophy. The aim of this study was to describe patterns of muscle atrophy following repair of isolated subscapularis (SSC) tendon. Methods Forty-nine control shoulder MRI scans, without rotator cuff pathology, atrophy or fatty infiltration, were prospectively evaluated and subscapularis diameters as well as cross sectional areas (complete and upper half) were assessed in a standardized oblique sagittal plane. Calculation of the ratio between the upper half of the cross sectional area (CSA) and the total CSA was performed. Eleven MRI scans of patients with subscapularis atrophy following isolated subscapularis tendon tears were analysed and cross sectional area ratio (upper half /total) determined. To guarantee reliable measurement of the CSA and its ratio, bony landmarks were also defined. All parameters were statistically compared for inter-rater reliability, reproducibility and capacity to quantify subscapularis atrophy. Results The mean age in the control group was 49.7 years (± 15.0). The mean cross sectional area (CSA) was 2367.0 mm2 (± 741.4) for the complete subscapularis muscle and 1048.2 mm2 (± 313.3) for the upper half, giving a mean ratio of 0.446 (± 0.046). In the subscapularis repair group the mean age was 56.7 years (± 9.3). With a mean cross sectional area of 1554.7 mm2 (± 419.9) for the complete and of 422.9 mm2 (± 173.6) for the upper half of the subscapularis muscle, giving a mean CSA ratio of 0.269 (± 0.065) which was seen to be significantly lower than that of the control group (p < 0.05). Conclusion Analysis of typical atrophy patterns of the subscapularis muscle demonstrates that the CSA ratio represents a reliable and reproducible assessment tool in quantifying subscapularis atrophy. We propose the classification of subscapularis atrophy as Stage I (mild atrophy) in case of reduction of the cross sectional area ratio < 0.4, Stage II (moderate atrophy) in case of < 0.35 and Stage III (severe atrophy) if < 0.3.


2016 ◽  
Vol 52 (1) ◽  
pp. 12-23 ◽  
Author(s):  
Ran S Sopher ◽  
Andrew A Amis ◽  
D Ceri Davies ◽  
Jonathan RT Jeffers

Data about a muscle’s fibre pennation angle and physiological cross-sectional area are used in musculoskeletal modelling to estimate muscle forces, which are used to calculate joint contact forces. For the leg, muscle architecture data are derived from studies that measured pennation angle at the muscle surface, but not deep within it. Musculoskeletal models developed to estimate joint contact loads have usually been based on the mean values of pennation angle and physiological cross-sectional area. Therefore, the first aim of this study was to investigate differences between superficial and deep pennation angles within each muscle acting over the ankle and predict how differences may influence muscle forces calculated in musculoskeletal modelling. The second aim was to investigate how inter-subject variability in physiological cross-sectional area and pennation angle affects calculated ankle contact forces. Eight cadaveric legs were dissected to excise the muscles acting over the ankle. The mean surface and deep pennation angles, fibre length and physiological cross-sectional area were measured. Cluster analysis was applied to group the muscles according to their architectural characteristics. A previously validated OpenSim model was used to estimate ankle muscle forces and contact loads using architecture data from all eight limbs. The mean surface pennation angle for soleus was significantly greater (54%) than the mean deep pennation angle. Cluster analysis revealed three groups of muscles with similar architecture and function: deep plantarflexors and peroneals, superficial plantarflexors and dorsiflexors. Peak ankle contact force was predicted to occur before toe-off, with magnitude greater than five times bodyweight. Inter-specimen variability in contact force was smallest at peak force. These findings will help improve the development of experimental and computational musculoskeletal models by providing data to estimate force based on both surface and deep pennation angles. Inter-subject variability in muscle architecture affected ankle muscle and contact loads only slightly. The link between muscle architecture and function contributes to the understanding of the relationship between muscle structure and function.


2004 ◽  
Vol 96 (2) ◽  
pp. 463-468 ◽  
Author(s):  
Eric Laffon ◽  
Christophe Vallet ◽  
Virginie Bernard ◽  
Michel Montaudon ◽  
Dominique Ducassou ◽  
...  

The present method enables the noninvasive assessment of mean pulmonary arterial pressure from magnetic resonance phase mapping by computing both physical and biophysical parameters. The physical parameters include the mean blood flow velocity over the cross-sectional area of the main pulmonary artery (MPA) at the systolic peak and the maximal systolic MPA cross-sectional area value, whereas the biophysical parameters are related to each patient, such as height, weight, and heart rate. These parameters have been measured in a series of 31 patients undergoing right-side heart catheterization, and the computed mean pulmonary arterial pressure value (PpaComp) has been compared with the mean pressure value obtained from catheterization (PpaCat) in each patient. A significant correlation was found that did not differ from the identity line PpaComp = PpaCat ( r = 0.92). The mean and maximal absolute differences between PpaComp and PpaCat were 5.4 and 11.9 mmHg, respectively. The method was also applied to compute the MPA systolic and diastolic pressures in the same patient series. We conclude that this computed method, which combines physical (whoever the patient) and biophysical parameters (related to each patient), improves the accuracy of MRI to noninvasively estimate pulmonary arterial pressures.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Qianru Li ◽  
Qi Zhang ◽  
Yehua Cai ◽  
Yinghui Hua

Purpose. To evaluate differences of Achilles tendon (AT) hardness and morphology between asymptomatic tendons in patients with acute AT ruptures on the contralateral side and asymptomatic tendons in healthy people by using computer-assisted quantification on axial-strain sonoelastography (ASE). Methods. The study consisted of 33 asymptomatic tendons in 33 patients (study group) and 34 tendons in 19 healthy volunteers (control group). All the tendons were examined by both ASE and conventional ultrasound. Computer-assisted quantification on ASE was applied to extract hardness variables, including the mean (Hmean), 20th percentile (H20), median (H50) and skewness (Hsk) of the hardness within tendon, and the ratio of the mean hardness within tendon to that outside tendon (Hratio) and three morphological variables: the thickness (THK), cross-sectional area, and eccentricity (ECC) of tendons. Results. The Hmean, Hsk, H20, H50, and Hratio in the proximal third of the tendon body in study group were significantly smaller than those in control group (Hmean: 0.43±0.09 vs 0.50±0.07, p=0.001; Hsk: -0.53±0.51 vs -1.09±0.51, p<0.001; H20: 0.31±0.10 vs 0.40±0.10, p=0.001; H50: 0.45±0.10 vs 0.53±0.08, p<0.001; Hratio: 1.01±0.25 vs 1.20±0.23, p=0.003). The THK and cross-sectional area of tendons in the study group were larger than those in the control group (p<0.05). Conclusions. As a quantitative objective method, the computer-assisted ASE reveals that the asymptomatic ATs contralateral to acute rupture are softer than those of healthy control group at the proximal third and the asymptomatic tendons in people with rupture history are thicker, larger, and rounder than those of normal volunteers especially at the middle and distal thirds of AT body.


2021 ◽  
Vol 20 (1) ◽  
pp. 50-54
Author(s):  
Thyago Guirelle Silva ◽  
Rodrigo Augusto do Amaral ◽  
Raphael Rezende Pratali ◽  
Luiz Pimenta

ABSTRACT Objective: To verify the effectiveness of indirect decompression after lateral access fusion in patients with high pelvic incidence. Methods: A retrospective, non-comparative, non-randomized analysis of 22 patients with high pelvic incidence who underwent lateral access fusion, 11 of whom were male and 11 female, with a mean age of 63 years (52-74), was conducted. Magnetic resonance exams were performed within one year after surgery. The cross-sectional area of the thecal sac, anterior and posterior disc heights, and bilateral foramen heights, measured pre- and postoperatively in axial and sagittal magnetic resonance images, were analyzed. The sagittal alignment parameters were measured using simple radiographs. The clinical results were evaluated using the ODI and VAS (back and lower limbs) questionnaires. Results: In all cases, the technique was performed successfully without neural complications. The mean cross-sectional area increased from 126.5 mm preoperatively to 174.3 mm postoperatively. The mean anterior disc height increased from 9.4 mm preoperatively to 12.8 mm postoperatively, while the posterior disc height increased from 6.3 mm preoperatively to 8.1 mm postoperatively. The mean height of the right foramen increased from 157.3 mm in the preoperative period to 171.2 mm in the postoperative period and that of the left foramen increased from 139.3 mm in the preoperative to 158.9 mm in the postoperative. Conclusions: This technique is capable of correcting misalignment in spinal deformity, achieving fusion and promoting the decompression of neural elements. Level of evidence III; Retrospective study.


1971 ◽  
Vol 15 (03) ◽  
pp. 231-245 ◽  
Author(s):  
C. M. Lee ◽  
J. N. Newman

A neutrally buoyant slender body of arbitrary sectional form, submerged beneath a free surface, is free to respond to an incident plane progressive wave system. The fluid is assumed inviscid, incompressible, homogeneous and infinitely deep. The first-order oscillatory motion of the body and the second-order time-average vertical force and pitching moment acting on the body are obtained in terms of Kochin's function. By use of slender-body theory for a deeply submerged body, the final expressions for the mean force and the moment are shown to depend on the longitudinal distribution of sectional area and added mass and on the amplitude and the frequency of the ambient surface waves. The magnitude of the mean force for various simple geometric cylinders is compared with that of a circular cylinder of equal cross-sectional area. The mean force on a nonaxisymmetric body is often approximated by replacing the section with circular profiles of equivalent cross-sectional area. A better scheme of approximation is presented, based on a simple way of estimating the two-dimensional added mass. It is expected that the effect of the cross-sectional geometry on mean vertical force and moment will be more significant when the body is very close to the free surface.


2014 ◽  
Vol 121 (3) ◽  
pp. 621-630 ◽  
Author(s):  
Naoya Matsuda ◽  
Hiroki Ohkuma ◽  
Masato Naraoka ◽  
Akira Munakata ◽  
Norihito Shimamura ◽  
...  

Object Cerebral vasospasm after subarachnoid hemorrhage (SAH) is a serious complication. Free radicals derived from subarachnoid clotting are recognized to play an important role. Oxidized low-density lipoprotein (ox-LDL) and lectin-like oxidized LDL receptor-1 (LOX-1) have been shown to be related to the pathogenesis of atherosclerosis and may increase in cerebral arteries after SAH, due to the action of free radicals derived from a subarachnoid clot. These molecules may also affect the pathogenesis of vasospasm, generating intracellular reactive oxygen species and downregulating the expression of endothelial NO synthase (eNOS). If so, apple polyphenol might be effective in the prevention of vasospasm due to an abundant content of procyanidins, which exhibit strong radical scavenging effects, and the ability to suppress ox-LDL and LOX-1. The purposes of this study were to investigate changes in levels of ox-LDL and LOX-1 after SAH and whether administering apple polyphenol can modify cerebral vasospasm. Methods Forty Japanese white rabbits were assigned randomly to 4 groups: an SAH group (n = 10); a shamoperation group (n = 10), which underwent intracisternal saline injection; a low-dose polyphenol group (n = 10) with SAH and oral administration of apple polyphenol at 10 mg/kg per day from Day 0 to Day 3; and a high-dose polyphenol group (n = 10) with SAH and oral administration of apple polyphenol at 50 mg/kg per day. At Day 4, the basilar artery and brain was excised from each rabbit. The degree of cerebral vasospasm was evaluated by measuring the cross-sectional area of each basilar artery, and the expression of ox-LDL, LOX-1, and eNOS was examined for each basilar artery by immunohistochemical staining and reverse transcriptase polymerase chain reaction. In addition, neuronal apoptosis in the cerebral cortex was evaluated by TUNEL. Results Compared with the sham group, the expression of ox-LDL and LOX-1 in the basilar arterial wall was significantly increased in the SAH group, the expression of eNOS was significantly decreased, and the cross-sectional area of basilar artery was significantly decreased. Compared with the SAH group, the cross-sectional area of basilar artery was increased in the polyphenol groups, together with the decreased expression of ox-LDL and LOX-1 and the increased expression of eNOS. In the high-dose polyphenol group, those changes were statistically significant compared with the SAH group. In the low-dose polyphenol group, those changes were smaller than in the high-dose polyphenol group. No apoptosis and no changes were seen in the cerebral cortex in all groups. Conclusions This is the first study suggesting that ox-LDL and LOX-1 increase due to SAH and that they may play a role in the pathogenesis of vasospasm. It is assumed that procyanidins in apple polyphenol may inhibit a vicious cycle of ox-LDL, LOX-1, and ROS in a dose-dependent manner. Apple polyphenol is a candidate for preventive treatment of cerebral vasospasm.


2016 ◽  
Vol 54 (4) ◽  
pp. 342-347
Author(s):  
M.H.S. Moxness ◽  
V. Bugten ◽  
W.M. Thorstensen ◽  
S. Nordgard ◽  
G. Bruskeland

Background: The differences in nasal geometry and function between OSA patients and healthy individuals are not known. Our aim was to evaluate the differences in nasal geometry and function using acoustic rhinometry (AR) and peak nasal inspiratory flow (PNIF) between an OSA population and healthy controls. Methodology: The study was designed as a prospective case-control study. Ninety-three OSA patients and 92 controls were enrolled from 2010 to 2015. The minimal cross-sectional area (MCA) and the nasal cavity volume (NCV) in two parts of the nose (MCA0-3/NCV0-3 and MCA3-5.2/NCV3-5.2) and PNIF were measured at baseline and after decongestion. Results: The mean MCA0-3 in the OSA group was 0.49 cm2; compared to 0.55 cm2 in controls. The mean NCV0-3 correspondingly was 2.51 cm3 compared to 2.73 cm3 in controls. PNIF measured 105 litres/minute in the OSA group and 117 litres/minute in the controls. Conclusions: OSA patients have a lower minimum cross-sectional area, nasal cavity volume and peak inspiratory flow compared to controls. Our study supports the view that changes in the nasal cavity may contribute to development of OSA.


2018 ◽  
Vol 6 (1) ◽  
Author(s):  
Lailatul Muqmiroh ◽  
Safinah Fajarini Yusfadhiyah ◽  
Paulus Rahardjo

Background : Ultrasonography (US) is the cheaper and non invasive modality to determine Achilles tendon. Prone position is the standart position of Achilles tendon US. However, it is a discomfort for an uncooperative patient and a difficult technique too. The erect position is an alternative technique of Achilles tendon US. The goal of this study is to compare the erection as an alternative position with prone as a standart position.Material and Methode: The patient who had an injury or any inflamation process of Achilles tendon were excluded. The patient underwent two positions of Achilles tendon US, 900 and dorsoflexi. Longitudinal axis measured tendon thickness and a transversal axis which covered a cross-sectional area of the tendon.Result: From all the 21 patients coming, 13 patients were males (61,9%), and eight patients were females (38,1%). The mean of tendon thickness and cross-sectional area in 900 prone positions were 4,24±0,24 mm, 30,08±2,86 mm, respectively. The mean of tendon thickness and cross-sectional area in 900 erect positions were 4,27±0,23 mm, 31,36±2,19 mm, respectively. There was no anisotropy effect during longitudinal axis examination. Conclusion: We found that there were no significant differences between a prone and erect position (p<0.05). The erect postion could be an alternative position, uncooperative patient in particular, without reducing the diagnostic value. Keywords: Achilles tendon the US, erect position, prone position, tendon thickness, cross-sectional area


Neurosurgery ◽  
2020 ◽  
Vol 88 (1) ◽  
pp. E60-E66
Author(s):  
Jacques Lara-Reyna ◽  
John Chae ◽  
Umberto Tosi ◽  
Mark M Souweidane ◽  
Rafael Uribe-Cardenas ◽  
...  

Abstract BACKGROUND The pathophysiological connection between Chiari malformation and syringomyelia is accepted. Debate remains, however, how can we best define changes in syringomyelia following surgery. OBJECTIVE To introduce a grading system focusing on syrinx reduction based on routinely and reproducible radiological information, and provide a suggestion of the application of this scale for prediction of patient's prognoses. METHODS Data from 48 patients with Chiari malformation and syringomyelia were compiled. We calculated syrinx cross-sectional area by approximating an ellipse in the largest axial plane. We compared the percentage of reduction or enlargement following surgery. The percentage change was grouped into four grades: Grade 0 = Increasing size, grade I ≤ 50% reduction, grade II = 50% to 90% reduction, grade III ≥ 90% reduction. RESULTS A total of 89.6% of patients had syrinx improvement after surgery. A total of 5 patients were grade 0, 14 were grade I, 20 patients were grade II, and 9 patients met criteria for grade III. The mean postoperative syrinx area was 24.1 mm2 (0-169 mm2) with a mean syrinx reduction of 62.7%. CONCLUSION Radiological improvement of syringomyelia can be mathematically defined and standardized to assist in communication in outcome-based trials. Radiological resolution is expected most patients.


Sign in / Sign up

Export Citation Format

Share Document