Stereotactic Implantation of Deep Brain Electrodes Using Computed Tomography

Neurosurgery ◽  
1983 ◽  
Vol 13 (3) ◽  
pp. 280-286 ◽  
Author(s):  
L. D. Lunsford ◽  
R. E. Latchaw ◽  
J. K. Vries

Abstract The selection of intracranial targets for stereotactic functional neurosurgical procedures traditionally has relied on information derived from pooled brain atlases and supplemented by contrast encephalographic or angiographic data from the individual patient. The integration of stereotaxy with computed tomography (CT) has permitted direct identification of intracranial targets based on multiplanar reformatted CT images from each individual patient. Four patients underwent the CT stereotactic implantation of a single deep brain electrode for the control of chronic pain (two cases) or of multiple depth electrodes for long term electroencephalographic recordings in the management of seizure disorders (two cases). In all patients, accurate and precise electrode placement was achieved from CT images alone. The use of CT permitted detailed anatomical stereotactic study of each patient's brain, the preplotting of electrode trajectories before probe insertion, and the rapid confirmation of precise electrode placement. Intraoperative contrast encephalography was not necessary. Functional neurosurgery was performed successfully and advantageously using CT stereotactic technique alone

2009 ◽  
Vol 110 (6) ◽  
pp. 1283-1290 ◽  
Author(s):  
Ludvic Zrinzo ◽  
Arjen L. J. van Hulzen ◽  
Alessandra A. Gorgulho ◽  
Patricia Limousin ◽  
Michiel J. Staal ◽  
...  

Object The authors examined the accuracy of anatomical targeting during electrode implantation for deep brain stimulation in functional neurosurgical procedures. Special attention was focused on the impact that ventricular involvement of the electrode trajectory had on targeting accuracy. Methods The targeting error during electrode placement was assessed in 162 electrodes implanted in 109 patients at 2 centers. The targeting error was calculated as the shortest distance from the intended stereotactic coordinates to the final electrode trajectory as defined on postoperative stereotactic imaging. The trajectory of these electrodes in relation to the lateral ventricles was also analyzed on postoperative images. Results The trajectory of 68 electrodes involved the ventricle. The targeting error for all electrodes was calculated: the mean ± SD and the 95% CI of the mean was 1.5 ± 1.0 and 0.1 mm, respectively. The same calculations for targeting error for electrode trajectories that did not involve the ventricle were 1.2 ± 0.7 and 0.1 mm. A significantly larger targeting error was seen in trajectories that involved the ventricle (1.9 ± 1.1 and 0.3 mm; p < 0.001). Thirty electrodes (19%) required multiple passes before final electrode implantation on the basis of physiological and/or clinical observations. There was a significant association between an increased requirement for multiple brain passes and ventricular involvement in the trajectory (p < 0.01). Conclusions Planning an electrode trajectory that avoids the ventricles is a simple precaution that significantly improves the accuracy of anatomical targeting during electrode placement for deep brain stimulation. Avoidance of the ventricles appears to reduce the need for multiple passes through the brain to reach the desired target as defined by clinical and physiological observations.


2021 ◽  
Author(s):  
Cristina V. Torres Diaz ◽  
Gabriel González-Escamilla ◽  
Dumitru Ciolac ◽  
Marta Navas García ◽  
Paloma Pulido Rivas ◽  
...  

AbstractDeep brain stimulation (DBS), specifically thalamic DBS, has achieved promising results to reduce seizure severity and frequency in pharmacoresistant epilepsies, thereby establishing it for clinical use. The mechanisms of action are, however, still unknown. We evidenced the brain networks directly modulated by centromedian (CM) nucleus-DBS and responsible for clinical outcomes in a cohort of patients uniquely diagnosed with generalized pharmacoresistant epilepsy. Preoperative imaging and long-term (2–11 years) clinical data from ten generalized pharmacoresistant epilepsy patients (mean age at surgery = 30.8 ± 5.9 years, 4 female) were evaluated. Volume of tissue activated (VTA) was included as seeds to reconstruct the targeted network to thalamic DBS from diffusion and functional imaging data. CM-DBS clinical outcome improvement (> 50%) appeared in 80% of patients and was tightly related to VTAs interconnected with a reticular system network encompassing sensorimotor and supplementary motor cortices, together with cerebellum/brainstem. Despite methodological differences, both structural and functional connectomes revealed the same targeted network. Our results demonstrate that CM-DBS outcome in generalized pharmacoresistant epilepsy is highly dependent on the individual connectivity profile, involving the cerebello-thalamo-cortical circuits. The proposed framework could be implemented in future studies to refine stereotactic implantation or the parameters for individualized neuromodulation.


Neurosurgery ◽  
2013 ◽  
Vol 74 (2) ◽  
pp. 154-162 ◽  
Author(s):  
Jonathan Roth ◽  
Chad Carlson ◽  
Orrin Devinsky ◽  
David H. Harter ◽  
William S. MacAllister ◽  
...  

Abstract BACKGROUND: Surgical resection of epileptic foci relies on accurate localization of the epileptogenic zone, often achieved by subdural and depth electrodes. Our epilepsy center has treated selected children with poorly localized medically refractory epilepsy with a staged surgical protocol, with at least 1 phase of invasive monitoring for localization and resection of epileptic foci. OBJECTIVE: To evaluate the safety of staged surgical treatments for refractory epilepsy among children. METHODS: Data were retrospectively collected, including surgical details and complications of all patients who underwent invasive monitoring. RESULTS: A total of 161 children underwent 200 admissions including staged procedures (&gt;1 surgery during 1 hospital admission), and 496 total surgeries. Average age at surgery was 7 years (range, 8 months to 16.5 years). A total of 250 surgeries included resections (and invasive monitoring), and 189 involved electrode placement only. The cumulative total number of surgeries per patient ranged from 2 to 10 (average, 3). The average duration of monitoring was 10 days (range, 1–30). There were no deaths. Follow-up ranged from 1 month to 10 years. Major complications included unexpected new permanent mild neurological deficits (2%/admission), central nervous system or bone flap infections (1.5%/admission), intracranial hemorrhage, cerebrospinal fluid leak, and a retained strip (each 0.5%/admission). Minor complications included bone absorption (5%/admission), positive surveillance sub-/epidural cultures in asymptomatic patients (5.5%/admission), noninfectious fever (5%/admission), and wound complications (3%/admission). Thirty complications necessitated additional surgical treatment. CONCLUSION: Staged epilepsy surgery with invasive electrode monitoring is safe in children with poorly localized medically refractory epilepsy. The rate of major complications is low and appears comparable to that associated with other elective neurosurgical procedures.


2020 ◽  
Author(s):  
Michael R Jones ◽  
Archit B Baskaran ◽  
Mark J Nolt ◽  
Joshua M Rosenow

Abstract BACKGROUND Deep brain stimulation (DBS) electrode placement utilizing a frame-based technique requires registration of the stereotactic frame with computed tomography (CT) or magnetic resonance (MR) imaging. This traditionally has been accomplished with a conventional CT scanner. In recent years, intraoperative CT has become more prevalent. OBJECTIVE To compare the coordinates obtained with intraoperative CT and conventional CT for registration of the stereotactic frame for DBS. METHODS Patients undergoing DBS electrode placement between 2015 and 2017, who underwent both conventional and intraoperative CT for registration of the stereotactic frame, were included for analysis. The coordinates for the stereotactic target, anterior commissure, and posterior commissure for each CT method were recorded. The mean, maximum, minimum, and standard deviation of the absolute difference for each of the paired coordinates was calculated. Paired t-tests were performed to test for statistical significance of the difference. The directional difference as well as the vector error between the paired coordinates was also calculated. RESULTS The mean absolute difference between conventional and intraoperative CT for the coordinate pairs was less than 0.279 mm or 0.211 degrees for all coordinate pairs analyzed. This was not statistically significant for any of the coordinate pairs. Moreover, the maximum absolute difference between all coordinate pairs was 1.04 mm. CONCLUSION Intraoperative CT imaging provides stereotactic frame registration coordinates that are similar to those obtained by a standard CT scanner. This may save time and hospital resources by obviating the need for the patient to go to the radiology department for a CT scan.


2013 ◽  
Vol 119 (2) ◽  
pp. 301-306 ◽  
Author(s):  
Kim J. Burchiel ◽  
Shirley McCartney ◽  
Albert Lee ◽  
Ahmed M. Raslan

Object In this prospective study the authors' objective was to evaluate the accuracy of deep brain stimulation (DBS) electrode placement using image guidance for direct anatomical targeting with intraoperative CT. Methods Preoperative 3-T MR images were merged with intraoperative CT images for planning. Electrode targets were anatomical, based on the MR images. A skull-mounted NexFrame system was used for electrode placement, and all procedures were performed under general anesthesia. After electrode placement, intraoperative CT images were merged with trajectory planning images to calculate accuracy. Accuracy was assessed by both vector error and deviation off the planned trajectory. Results Sixty patients (33 with Parkinson disease, 26 with essential tremor, and 1 with dystonia) underwent the procedure. Patient's mean age was 64 ± 9.5 years. Over an 18-month period, 119 electrodes were placed (all bilateral, except one). Electrode implant locations were the ventral intermediate nucleus (VIM), globus pallidus internus (GPI), and subthalamic nucleus (STN) in 25, 23, and 12 patients, respectively. Target accuracy measurements were as follows: mean vector error 1.59 ± 1.11 mm and mean deviation off trajectory 1.24 ± 0.87 mm. There was no statistically significant difference between the accuracy of left and right brain electrodes. There was a statistically significant (negative) correlation between the distance of the closest approach of the electrode trajectory to the ventricular wall of the lateral ventricle and vector error (r2 = −0.339, p < 0.05, n = 76), and the deviation from the planned trajectory (r2 = −0.325, p < 0.05, n = 77). Furthermore, when the distance from the electrode trajectory and the ventricular wall was < 4 mm, the correlation of the ventricular distance to the deviation from the planned trajectory was stronger (r2 = −0.419, p = 0.05, n = 19). Electrodes placed in the GPI were significantly more accurate than those placed in the VIM (p < 0.05). Only 1 of 119 electrodes required intraoperative replacement due to a vector error > 3 mm. In this series there was one infection and no intraparenchymal hemorrhages. Conclusions Placement of DBS electrodes using an intraoperative CT scanner and the NexFrame achieves an accuracy that is at least comparable to other methods.


2020 ◽  
Vol 19 (3) ◽  
pp. E224-E229 ◽  
Author(s):  
Rozemarije A Holewijn ◽  
Maarten Bot ◽  
Pepijn van den Munckhof ◽  
P Richard Schuurman

Abstract BACKGROUND Intraoperative cone-beam computed tomography (iCBCT) allows for rapid 3-dimensional imaging. However, it is currently unknown whether this imaging technique offers sufficient accuracy for stereotactic registration during deep brain stimulation (DBS) procedures. OBJECTIVE To determine the accuracy of iCBCT, with the O-arm O2 (Medtronic), for stereotactic registration by comparing this modality to stereotactic magnetic resonance imaging (MRI). METHODS All DBS patients underwent a preoperative non-stereotactic 3 Tesla MRI, stereotactic 1.5 Tesla MRI, stereotactic O-arm iCBCT, postimplantation O-arm iCBCT, and postoperative conventional multidetector computed tomography (CT) scan. We compared stereotactic (X, Y, and Z) coordinates of the anterior commissure (AC), the posterior commissure (PC), and midline reference (MR) between stereotactic MRI and iCBCT. For localisation comparison of electrode contacts, stereotactic coordinates of electrode tips were compared between the postoperative multidetector CT and iCBCT. RESULTS A total of 20 patients were evaluated. The average absolute difference in stereotactic coordinates of AC, PC, and MR was 0.4 ± 0.4 mm for X, 0.4 ± 0.4 mm for Y, and 0.7 ± 0.5 mm for Z. The average absolute difference in X-, Y-, and Z-coordinates for electrode localisation (N = 34) was 0.3 ± 0.3 mm, 0.6 ± 0.3 mm, and 0.6 ± 0.6 mm. These differences were small enough not to be considered clinically relevant. CONCLUSION Stereotactic MRI and O-arm iCBCT yield comparable coordinates in pre- and postoperative imaging. Differences found are below the threshold of clinical relevance. Intraoperative O-arm CBCT offers rapid stereotactic registration and evaluation of electrode placement. This increases patient comfort and neurosurgical workflow efficiency.


2008 ◽  
Vol 14 (8) ◽  
pp. 595-599 ◽  
Author(s):  
Thomas Fiegele ◽  
Gudrun Feuchtner ◽  
Florian Sohm ◽  
Richard Bauer ◽  
Jürgen Volker Anton ◽  
...  

Neurosurgery ◽  
2017 ◽  
Vol 83 (4) ◽  
pp. 642-650 ◽  
Author(s):  
Anton Fomenko ◽  
Demitre Serletis

Abstract BACKGROUND Modern-day stereotactic techniques have evolved to tackle the neurosurgical challenge of accurately and reproducibly accessing specific brain targets. Neurosurgical advances have been made in synergy with sophisticated technological developments and engineering innovations such as automated robotic platforms. Robotic systems offer a unique combination of dexterity, durability, indefatigability, and precision. OBJECTIVE To perform a systematic review of robotic integration for cranial stereotactic guidance in neurosurgery. Specifically, we comprehensively analyze the strengths and weaknesses of a spectrum of robotic technologies, past and present, including details pertaining to each system's kinematic specifications and targeting accuracy profiles. METHODS Eligible articles on human clinical applications of cranial robotic-guided stereotactic systems between 1985 and 2017 were extracted from several electronic databases, with a focus on stereotactic biopsy procedures, stereoelectroencephalography, and deep brain stimulation electrode insertion. RESULTS Cranial robotic stereotactic systems feature serial or parallel architectures with 4 to 7 degrees of freedom, and frame-based or frameless registration. Indications for robotic assistance are diversifying, and include stereotactic biopsy, deep brain stimulation and stereoelectroencephalography electrode placement, ventriculostomy, and ablation procedures. Complication rates are low, and mainly consist of hemorrhage. Newer systems benefit from increasing targeting accuracy, intraoperative imaging ability, improved safety profiles, and reduced operating times. CONCLUSION We highlight emerging future directions pertaining to the integration of robotic technologies into future neurosurgical procedures. Notably, a trend toward miniaturization, cost-effectiveness, frameless registration, and increasing safety and accuracy characterize successful stereotactic robotic technologies.


Author(s):  
Jorge Dornellys da Silva Lapa ◽  
Fábio Luiz Franceschi Godinho ◽  
Manoel Jacobsen Teixeira ◽  
Clarice Listik ◽  
Ricardo Ferrareto Iglesio ◽  
...  

Abstract Background and Study Aims Deep brain stimulation (DBS) of the globus pallidus internus (GPi) is a highly effective therapy for primary generalized and focal dystonias, but therapeutic success is compromised by a nonresponder rate of up to 20%. Variability in electrode placement and in tissue stimulated inside the GPi may explain in part different outcomes among patients. Refinement of the target within the pallidal area could be helpful for surgery planning and clinical outcomes. The objective of this study was to discuss current and potential methodological (somatotopy, neuroimaging, and neurophysiology) aspects that might assist neurosurgical targeting of the GPi, aiming to treat generalized or focal dystonia. Methods We selected published studies by searching electronic databases and scanning the reference lists for articles that examined the anatomical and electrophysiologic aspects of the GPi in patients with idiopathic/inherited dystonia who underwent functional neurosurgical procedures. Results The sensorimotor sector of the GPi was the best target to treat dystonic symptoms, and was localized at its lateral posteroventral portion. The effective volume of tissue activated (VTA) to treat dystonia had a mean volume of 153 mm3 in the posterior GPi area. Initial tractography studies evaluated the close relation between the electrode localization and pallidothalamic tract to control dystonic symptoms.Regarding the somatotopy, the more ventral, lateral, and posterior areas of the GPi are associated with orofacial and cervical representation. In contrast, the more dorsal, medial, and anterior areas are associated with the lower limbs; between those areas, there is the representation of the upper limb. Excessive pallidal synchronization has a peak at the theta band of 3 to 8 Hz, which might be responsible for generating dystonic symptoms. Conclusions Somatotopy assessment of posteroventral GPi contributes to target-specific GPi sectors related to segmental body symptoms. Tractography delineates GPi output pathways that might guide electrode implants, and electrophysiology might assist in pointing out areas of excessive theta synchronization. Finally, the identification of oscillatory electrophysiologic features that correlate with symptoms might enable closed-loop approaches in the future.


Sign in / Sign up

Export Citation Format

Share Document