Hierarchy of the genetic interactions that specify the anteroposterior segmentation pattern of the Drosophila embryo as monitored by caudal protein expression

Development ◽  
1987 ◽  
Vol 101 (3) ◽  
pp. 421-435 ◽  
Author(s):  
M. Mlodzik ◽  
W.J. Gehring

The establishment of the body pattern of Drosophila along the anteroposterior axis requires the coordinated functions of at least three classes of genes. First, the maternally active coordinate genes define the polarity of the embryo and act as primary determinants; second, the segmentation genes divide the developing embryo into the correct number of segments and third, the segments become specified by the homeotic selector genes. We have examined the effects of mutations in the genes of the first two classes on the spatial distribution of the protein product(s) of the caudal (cad) gene, which in wild type shows a graded distribution along the anteroposterior axis during the syncytial blastoderm stage, whereas its persistent zygotic expression is confined to the telson region (the posterior terminal structures). Mutations in maternal genes that specify the spatial coordinates of the egg and the future embryo change the gradient distribution of cad according to the alterations of the fate map which they produce. A second group of maternally expressed genes, the gap genes of the ‘grandchildless-knirps’ group, which are considered to represent posterior activities, do not have any effect on the cad gradient. The same is true for the zygotic segmentation genes that are active after fertilization. However, the same class of zygotic genes partly affects the zygotic cad expression in the telson. Therefore, the two phases of cad expression represent different levels within the genetic hierarchy. The cad protein gradient seems to form in response to the primary maternal determinants independent of the segmentation genes, whereas the latter influence zygotic cad expression in the telson region which corresponds to a homeotic selector gene function.

Development ◽  
1987 ◽  
Vol 101 (1) ◽  
pp. 1-22 ◽  
Author(s):  
M. Akam

The metameric organization of the Drosophila embryo is generated in the first 5 h after fertilization. An initially rather simple pattern provides the foundation for subsequent development and diversification of the segmented part of the body. Many of the genes that control the formation of this pattern have been identified and at least twenty have been cloned. By combining the techniques of genetics, molecular biology and experimental embryology, it is becoming possible to unravel the role played by each of these genes. The repeating segment pattern is defined by the persistent expression of engrailed and of other genes of the ‘segment polarity’ class. The establishment of this pattern is directed by a transient molecular prepattern that is generated in the blastoderm by the activity of the ‘pair-rule’ genes. Maternal determinants at the poles of the egg coordinate this prepattern and define the anteroposterior sequence of pattern elements. The primary effect of these determinants is not known, but genes required for their production have been identified and the product of one of these, bicoid is known to be localized at the anterior of the egg. One early consequence of their activity is to define domains along the A-P axis within which a series of ‘cardinal’ genes are transcribed. The activity of the cardinal genes is required both to coordinate the process of segmentation and to define the early domains of homeotic gene expression. Further interactions between the homeotic genes and other classes of segmentation genes refine the initial establishment of segment identities.


Development ◽  
1989 ◽  
Vol 106 (1) ◽  
pp. 145-158 ◽  
Author(s):  
L. Ambrosio ◽  
A.P. Mahowald ◽  
N. Perrimon

Maternal expression of the l(1)pole hole (l(1)ph) gene product is required for the development of the Drosophila embryo. When maternal l(1)ph+ activity is absent, alterations in the embryonic fate map occur as visualized by the expression of segmentation genes fushitarazu and engrailed. If both maternal and zygotic activity is absent, embryos degenerate around 7 h of development. If only maternal activity is missing, embryos complete embryogenesis and show deletions of both anterior and posterior structures. Anteriorly, structures originating from labral and acron head regions are missing. Posteriorly, abdominal segments A8, 9 and 10, the telson and the proctodeum are missing. Similar pattern deletions are observed in embryos derived from the terminal class of female sterile mutations. Thus, the maternal l(1)ph+ gene product is required for the establishment of cell identities at the anterior and posterior poles of the Drosophila embryo.


Development ◽  
1988 ◽  
Vol 102 (2) ◽  
pp. 325-338 ◽  
Author(s):  
A. Martinez-Arias ◽  
R.A.H. White

Mutations in the pair-rule class of segmentation genes cause pattern deletions with a double segment periodicity in the Drosophila embryo. This phenotype is, in part, due to cell death. Using molecular probes for engrailed (en) and Ultrabithorax (Ubx) expression as markers for the body plan, we have studied the phenotype of pair-rule mutants prior to cell death. All these mutants alter the expression of en and Ubx; their molecular phenotypes suggest a pathway whereby pair-rule gene functions construct metameric units.


Genome ◽  
1989 ◽  
Vol 31 (1) ◽  
pp. 422-425 ◽  
Author(s):  
Reinhard Schuh ◽  
Herbert Jäckle

The conventional technique for assigning a particular genetic function to a cloned transcription unit has relied on the rescue of the mutant phenotype by germ line transformation. An alternative approach is to mimic a mutant phenotype by the use of antisense RNA injections to produce phenocopies. This approach has been successfully used to identify genes involved in early pattern forming processes in the Drosophila embryo. At the time when antisense RNA is injected, the embryo develops as a syncytium composed of about 5000 nuclei which share a common cytoplasm. The gene interactions required to establish the body plan occur before cellularization at the blastoderm stage. Thus the nuclei and their exported transcripts are accessible to the injected antisense RNA. The antisense RNA interferes with the endogenous RNA by an as yet unidentified mechanism. The extent of interference is only partial and produces phenocopies with characteristics of weak mutant alleles. In our lab and others, this approach has been successfully used to identify several genes required for normal Drosophila pattern formation.Key words: Drosophila segmentation, phenocopy, antisense RNA, Krüppel gene.


Development ◽  
1989 ◽  
Vol 105 (1) ◽  
pp. 167-174 ◽  
Author(s):  
J.W. Mahaffey ◽  
R.J. Diederich ◽  
T.C. Kaufman

Antibodies that specifically recognize proteins encoded by the homeotic genes: Sex combs reduced, Deformed, labial and proboscipedia, were used to follow the distribution of these gene products during embryogenesis. The position of engrailed-expressing cells was used as a reference and staining conditions were established that could distinguish, among cells expressing engrailed, one of the homeotic proteins or both. Our observations demonstrate two important facts about establishing identity in the head segments. First, in contrast to the overlapping pattern of homeotic gene expression in the trunk segments, we observe a non-overlapping pattern in the head for those homeotic proteins required during embryogenesis. In contrast, the spatial accumulation of the protein product of the non-vital proboscipedia locus overlaps partially with the distribution of the Deformed and Sex combs reduced proteins in the maxillary and labial segments, respectively. Second, two of the proteins, Sex combs reduced and Deformed, have different dorsal and ventral patterns of accumulation. Dorsally, these proteins are expressed in segmental domains while, within the ventral region, a parasegmental register is observed. The boundary where this change in pattern occurs coincides with the junction between the ventral neurogenic region and the dorsal epidermis. After contraction of the germ band, when the nerve cord has completely separated from the epidermis, the parasegmental pattern is observed only within the ventral nerve cord while a segmental register is maintained throughout the epidermis.


1987 ◽  
Vol 122 (2) ◽  
pp. 464-470 ◽  
Author(s):  
Paul A. Mahoney ◽  
Judith A. Lengyel

Development ◽  
1988 ◽  
Vol 102 (1) ◽  
pp. 85-99 ◽  
Author(s):  
J. Cooke ◽  
E.J. Smith

We have carried out an anatomical study of Xenopus larval and gastrula stages resulting from treatment of synchronous early blastulae for brief periods with Li+. We confirm the proposal that such treatment causes a particular transformation, and partial elimination, of the normal body pattern. Coordinated restriction of pattern, without appreciable loss of cell number, is seen in all three germ layers. The distortion has been investigated by quantitative study of mesoderms at a standard stage, in relation to the normal fate map for mesoderm, and with the help of immunofluorescence on sections for somitic muscle and for blood. In the extreme syndrome, mesoderm arises from all around the blastula as usual, but is symmetrical and corresponds to that arising near the dorsal/anterior meridian of the normally specified egg or embryo with a large posterior subset of the normal pattern values thus missing. The effect is independent of any inhibition of archenteron formation or mesoderm migration (i.e. the cell mechanics of gastrulation) incurred by the treatment. It is also quite separate from a syndrome caused by more prolonged exposure to Li+ during gastrulation. A small, but distinctive, anterior pattern region is also not expressed and, anomalously in relation to their general nature, these forms differentiate considerable blood tissue. We consider the implications of some details of the pattern restriction for our understanding of interaction in the normal development and propose that the Li+ embryo is likely to be useful as a specific ‘differential screen’, in relation to the normal, during the search for those gene products that mediate initial regionalization of the body.


Development ◽  
1987 ◽  
Vol 99 (3) ◽  
pp. 327-332 ◽  
Author(s):  
S.B. Carroll ◽  
G.M. Winslow ◽  
V.J. Twombly ◽  
M.P. Scott

At least 13 genes control the establishment of dorsoventral polarity in the Drosophila embryo and more than 30 genes control the anteroposterior pattern of body segments. Each group of genes is thought to control pattern formation along one body axis, independently of the other group. We have used the expression of the fushi tarazu (ftz) segmentation gene as a positional marker to investigate the relationship between the dorsoventral and anteroposterior axes. The ftz gene is normally expressed in seven transverse stripes. Changes in the striped pattern in embryos mutant for other genes (or progeny of females homozygous for maternal-effect mutations) can reveal alterations of cell fate resulting from such mutations. We show that in the absence of any of ten maternal-effect dorsoventral polarity gene functions, the characteristic stripes of ftz protein are altered. Normally there is a difference between ftz stripe spacing on the dorsal and ventral sides of the embryo; in dorsalized mutant embryos the ftz stripes appear to be altered so that dorsal-type spacing occurs on all sides of the embryo. These results indicate that cells respond to dorsoventral positional information in establishing early patterns of gene expression along the anteroposterior axis and that there may be more significant interactions between the different axes of positional information than previously determined.


2001 ◽  
Vol 47 (7) ◽  
pp. 1147-1156 ◽  
Author(s):  
Elaine Lyon ◽  
Elizabeth L Frank

Abstract Background: Hereditary hemochromatosis is an inherited disorder of iron metabolism that is characterized by excessive iron deposition in major organs of the body. Chronic increased iron absorption leads to multiorgan dysfunction. Since the discovery of the gene responsible for the majority of cases, research has progressed rapidly to identify the gene product, the effects of mutations, and the implications for different populations. The protein product of the HFE gene is a transmembrane glycoprotein, termed HFE, that modulates iron uptake. Mutations in the HFE protein compromise its function and produce disease symptoms. Two mutations, C282Y and H63D, have been linked to the majority of disease cases. Approach: We reviewed the recent literature for the molecular basis of hereditary hemochromatosis. Genotypic information was combined with biochemical and clinical phenotypic information to achieve a better understanding of the disease mechanism. Content: This review provides a comprehensive discussion of known mutations in the HFE gene and their phenotypic expression. Diagnostic criteria using molecular genetic techniques in conjunction with traditional biochemical tests are provided. Current methods and limitations of molecular testing are examined in detail. A strategy for population screening and an algorithm for diagnosis that incorporates molecular testing are presented. Treatment by therapeutic phlebotomy and the use of blood obtained from hemochromatosis patients are discussed. Summary: Although the disease mechanism has not been completely elucidated, phenotypic and penetrance data are becoming available. Controversy still exists concerning the role of genetic testing in diagnosis and population screening.


Development ◽  
1992 ◽  
Vol 114 (1) ◽  
pp. 147-163 ◽  
Author(s):  
T. Lepage ◽  
C. Ghiglione ◽  
C. Gache

A cDNA clone coding for a sea urchin embryonic protein was isolated from a prehatching blastula lambda gt11 library. The predicted translation product is a secreted 64 × 10(3) Mr enzyme designated as BP10. The protein contains several domains: a signal peptide, a putative propeptide, a catalytic domain with an active center typical of a Zn(2+)-metalloprotease, an EGF-like domain and two internal repeats similar to repeated domains found in the C1s and C1r serine proteases of the complement cascade. The BP10 protease is constructed with the same domains as the human bone morphogenetic protein BMP-1, a protease described as a factor involved in bone formation, and as the recently characterized product of the tolloid gene which is required for correct dorsal-ventral patterning of the Drosophila embryo. The transcription of the BP10 gene is transiently activated around the 16- to 32-cell stage and the accumulation of BP10 transcripts is limited to a short period at the blastula stage. By in situ hybridization with digoxygenin-labelled RNA probes, the BP10 transcripts were only detected in a limited area of the blastula, showing that the transcription of the BP10 gene is also spatially controlled. Antibodies directed against a fusion protein were used to detect the BP10 protein in embryonic extracts. The protein is first detected in early blastula stages, its level peaks in late cleavage, declines abruptly before ingression of primary mesenchyme cells and remains constant in late development. The distribution of the BP10 protein during its synthesis and secretion was analysed by immunostaining blastula-stage embryos. The intracellular localization of the BP10 staining varies with time. The protein is first detected in a perinuclear region, then in an apical and submembranous position just before its secretion into the perivitelline space. The protein is synthesized in a sharply delimited continuous territory spanning about 70% of the blastula. Comparison of the size and orientation of the labelled territory in the late blastula with the fate map of the blastula stage embryo shows that the domain in which the BP10 gene is expressed corresponds to the presumptive ectoderm. Developing embryos treated with purified antibodies against the BP10 protein and with synthetic peptides derived from the EGF-like domain displayed perturbations in morphogenesis and were radialized to various degrees. These results are consistent with a role for BP10 in the differentiation of ectodermal lineages and subsequent patterning of the embryo. On the basis of these results, we speculate that the role of BP10 in the sea urchin embryo might be similar to that of tolloid in Drosophila. We discuss the idea that the processes of spatial regulation of gene expression along the animal-vegetal in sea urchin and dorsal-ventral axes in Drosophila might have some similarities and might use common elements.


Sign in / Sign up

Export Citation Format

Share Document