scholarly journals The RNA-binding protein ELAV regulates Hox RNA processing, expression and function within the Drosophila nervous system

Development ◽  
2014 ◽  
Vol 141 (10) ◽  
pp. 2046-2056 ◽  
Author(s):  
A. Rogulja-Ortmann ◽  
J. Picao-Osorio ◽  
C. Villava ◽  
P. Patraquim ◽  
E. Lafuente ◽  
...  
2016 ◽  
Vol 44 (5) ◽  
pp. 1321-1337 ◽  
Author(s):  
Andrew R. Clark ◽  
Jonathan L.E. Dean

Twenty years ago, the first description of a tristetraprolin (TTP) knockout mouse highlighted the fundamental role of TTP in the restraint of inflammation. Since then, work from several groups has generated a detailed picture of the expression and function of TTP. It is a sequence-specific RNA-binding protein that orchestrates the deadenylation and degradation of several mRNAs encoding inflammatory mediators. It is very extensively post-translationally modified, with more than 30 phosphorylations that are supported by at least two independent lines of evidence. The phosphorylation of two particular residues, serines 52 and 178 of mouse TTP (serines 60 and 186 of the human orthologue), has profound effects on the expression, function and localisation of TTP. Here, we discuss the control of TTP biology via its phosphorylation and dephosphorylation, with a particular focus on recent advances and on questions that remain unanswered.


Author(s):  
Masashi Yukawa ◽  
Mitsuki Ohishi ◽  
Yusuke Yamada ◽  
Takashi Toda

Cells form a bipolar spindle during mitosis to ensure accurate chromosome segregation. Proper spindle architecture is established by a set of kinesin motors and microtubule-associated proteins. In most eukaryotes, kinesin-5 motors are essential for this process, and genetic or chemical inhibition of their activity leads to the emergence of monopolar spindles and cell death. However, these deficiencies can be rescued by simultaneous inactivation of kinesin-14 motors, as they counteract kinesin-5. We conducted detailed genetic analyses in fission yeast to understand the mechanisms driving spindle assembly in the absence of kinesin-5. Here we show that deletion of the nrp1 gene, which encodes a putative RNA-binding protein with unknown function, can rescue temperature sensitivity caused by cut7-22, a fission yeast kinesin-5 mutant. Interestingly, kinesin-14/Klp2 levels on the spindles in the cut7 mutants were significantly reduced by the nrp1 deletion, although the total levels of Klp2 and the stability of spindle microtubules remained unaffected. Moreover, RNA-binding motifs of Nrp1 are essential for its cytoplasmic localization and function. We have also found that a portion of Nrp1 is spatially and functionally sequestered by chaperone-based protein aggregates upon mild heat stress and limits cell division at high temperatures. We propose that Nrp1 might be involved in post-transcriptional regulation through its RNA-binding ability to promote the loading of Klp2 on the spindle microtubules.


RNA ◽  
2002 ◽  
Vol 8 (5) ◽  
pp. 671-685 ◽  
Author(s):  
WENQING ZHANG ◽  
HAIYING LIU ◽  
KYOUNGHA HAN ◽  
PAULA J. GRABOWSKI

2019 ◽  
Vol 116 (37) ◽  
pp. 18619-18628 ◽  
Author(s):  
Jaewon Song ◽  
Sanghyun Lee ◽  
Dong-Yeon Cho ◽  
Sungwon Lee ◽  
Hyewon Kim ◽  
...  

RNA represents a pivotal component of host–pathogen interactions. Human cytomegalovirus (HCMV) infection causes extensive alteration in host RNA metabolism, but the functional relationship between the virus and cellular RNA processing remains largely unknown. Through loss-of-function screening, we show that HCMV requires multiple RNA-processing machineries for efficient viral lytic production. In particular, the cellular RNA-binding protein Roquin, whose expression is actively stimulated by HCMV, plays an essential role in inhibiting the innate immune response. Transcriptome profiling revealed Roquin-dependent global down-regulation of proinflammatory cytokines and antiviral genes in HCMV-infected cells. Furthermore, using cross-linking immunoprecipitation (CLIP)-sequencing (seq), we identified IFN regulatory factor 1 (IRF1), a master transcriptional activator of immune responses, as a Roquin target gene. Roquin reduces IRF1 expression by directly binding to its mRNA, thereby enabling suppression of a variety of antiviral genes. This study demonstrates how HCMV exploits host RNA-binding protein to prevent a cellular antiviral response and offers mechanistic insight into the potential development of CMV therapeutics.


2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Ying Liu ◽  
Xinyun Chen ◽  
Chen Xu ◽  
Ning Sun ◽  
Weinian Shou

2009 ◽  
Vol 65 ◽  
pp. S90
Author(s):  
Mana Igarashi ◽  
Masato Yano ◽  
James Hirotaka Okano ◽  
Hideyuki Okano

2015 ◽  
Vol 27 (12) ◽  
pp. 3294-3308 ◽  
Author(s):  
Denghui Xing ◽  
Yajun Wang ◽  
Michael Hamilton ◽  
Asa Ben-Hur ◽  
Anireddy S.N. Reddy

1994 ◽  
Vol 19 ◽  
pp. S95
Author(s):  
Shin-Ichi Sakakibara ◽  
Masaharu Ogawa ◽  
Katsuhiko Mikosiba ◽  
Hideyuki Okano

Sign in / Sign up

Export Citation Format

Share Document