Spatial aspects of neural induction in Xenopus laevis

Development ◽  
1989 ◽  
Vol 107 (4) ◽  
pp. 785-791 ◽  
Author(s):  
E.A. Jones ◽  
H.R. Woodland

A monoclonal antibody, 2G9, has been identified and characterised as a marker of neural differentiation in Xenopus. The epitope is present throughout the adult central nervous system and in peripheral nerves. Staining is first detected in embryos at stage 21 in the thoracic region. By stage 29 it stains the whole central nervous system, except the tail tip. The epitope is present in a 65K Mr protein, and includes sialic acid. The antibody also reacts with neural tissue in mice and axolotls and newts. 2G9 was used to show that both notochord and somites are capable of neural induction, and the stimulus is present as late as stage 22. Attempts to demonstrate the induction of nervous system by developing nervous system (homoiogenetic induction) were unsuccessful. The view that the lateral extent of the nervous system might be determined by that of the inductive stimulus is discussed. Neural induction was detected as early as stage 10 and occurs in embryos without gastrulation and without cell division from stage 7 1/2.

Development ◽  
1959 ◽  
Vol 7 (2) ◽  
pp. 128-145
Author(s):  
Arthur Hughes

In 1913 G. E. Coghill initiated a series of papers on the neuro-embryology of the Urodele Ambystoma with a description of the earliest stages of the motor system of the trunk (Coghill, 1913). His main conclusion is stated early in the paper in these words: The neurones … which establish the earliest contact with the cells of the myotome are found in Amblystoma to be at the same time the neurones of the motor tract in the central nervous system. The primary ventral root fibre is a collateral of the tract cell. (Coghill, 1913, p. 121.) Thirteen years later, among a group of other papers on the developing nervous system of Ambystoma, he returned to this theme, and in a series of examples described the form of the first nerve process within the basal plate of the cord.


2020 ◽  
Vol 117 (17) ◽  
pp. 9466-9476 ◽  
Author(s):  
Jolien Wolbert ◽  
Xiaolin Li ◽  
Michael Heming ◽  
Anne K. Mausberg ◽  
Dagmar Akkermann ◽  
...  

Peripheral nerves contain axons and their enwrapping glia cells named Schwann cells (SCs) that are either myelinating (mySCs) or nonmyelinating (nmSCs). Our understanding of other cells in the peripheral nervous system (PNS) remains limited. Here, we provide an unbiased single cell transcriptomic characterization of the nondiseased rodent PNS. We identified and independently confirmed markers of previously underappreciated nmSCs and nerve-associated fibroblasts. We also found and characterized two distinct populations of nerve-resident homeostatic myeloid cells that transcriptionally differed from central nervous system microglia. In a model of chronic autoimmune neuritis, homeostatic myeloid cells were outnumbered by infiltrating lymphocytes which modulated the local cell–cell interactome and induced a specific transcriptional response in glia cells. This response was partially shared between the peripheral and central nervous system glia, indicating common immunological features across different parts of the nervous system. Our study thus identifies subtypes and cell-type markers of PNS cells and a partially conserved autoimmunity module induced in glia cells.


Cell ◽  
1994 ◽  
Vol 76 (1) ◽  
pp. 117-129 ◽  
Author(s):  
David Westaway ◽  
Stephen J. DeArmond ◽  
Juliana Cayetano-Canlas ◽  
Darlene Groth ◽  
Dallas Foster ◽  
...  

2020 ◽  
Vol 56 (03) ◽  
pp. 177-182
Author(s):  
Neeraj Balaini ◽  
Manish Modi

AbstractCoronavirus disease 2019 (COVID-19) is a viral illness caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) which has taken the form of a pandemic. It mainly presents as fever, cough, shortness of breath involving respiratory system but neurological manifestations are increasingly being recognized worldwide and even virus RNA was demonstrated to be present in cerebrospinal fluid of a patient. SARS-CoV-2 involves both central nervous system and peripheral nervous system. Virus can enter the neural tissue from hematological route or through retrograde transport from nerve endings. Physicians especially neurologists should be aware regarding neurological manifestations as patient can present with these conditions in emergency. We therefore reviewed the neurological diseases or complications associated with COIVID-19 in available literature.


2016 ◽  
Vol 7 (4) ◽  
pp. 253-258 ◽  
Author(s):  
Jing Zhang ◽  
Weizhen Zhang

AbstractIrisin was initially discovered as a novel hormone-like myokine released from skeletal muscle during exercise to improve obesity and glucose dysfunction by stimulating the browning of white adipose tissue. Emerging evidence have indicated that irisin also affects brain function. FNDC5 mRNA and FNDC5/irisin immunoreactivity are present in various regions of the brain. Central irisin is involved in the regulation of neural differentiation and proliferation, neurobehavior, energy expenditure and cardiac function. Elevation of peripheral irisin level stimulates hippocampal genes related to neuroprotection, learning and memory. In this brief review, we summarize the current understanding on neuronal functions of irisin. In addition, we discuss the pros and cons for this molecule as a potential messenger mediating the crosstalk between skeletal muscle and central nervous system during exercise.


1981 ◽  
Vol 88 (1) ◽  
pp. 67-72 ◽  
Author(s):  
P F Davison ◽  
R N Jones

Several classes of 10-nm filaments have been reported in mammalian cells and they can be distinguished by the size of their protein subunit. We have studied the distribution of these filaments in nerves from calves and other mammals. From the display on polyacrylamide electrophoretic gels of proteins in extracts from fibroblast and central, cranial and peripheral nerves, we cut the appropriate stained bands and prepared iodinated peptide maps. The similarities between the respective maps provide strong evidence for the presence of vimentin in cranial and peripheral nerves. The glial fibrillary acidic protein was found in axon preparations from the central nervous system, but was not identified in distal segments of some cranial nerves, nor in peripheral nerve.


Sign in / Sign up

Export Citation Format

Share Document