Microsurgically generated discontinuities provoke heritable changes in cellular handedness of a ciliate, Stylonychia mytilus
Stylonychia mytilus is a dorsoventrally flattened ciliate with compound ciliary structures arranged in a specific manner on the cell surface. In mirror-image (MI) doublets of this ciliate, two nearly complete sets of ciliary structures are arrayed side-by-side, one in a normal or ‘right-handed’ (RH) arrangement, the other in a reversed or ‘left-handed’ (LH) arrangement. MI-doublets exist in two forms, one with the RH component on the right, the LH component on the left, and feeding structures near the center (‘buccal-adjoining MI-doublet’); the other with the RH component on the left, the LH component on the right, and feeding structures on the lateral edges (‘buccal-opposing MI-doublet’). We describe an operation that can generate either type of MI-doublet. This operation interchanges large anterior and posterior regions of the cell, transposing the original posterior region anteriorly (P—A) and the original anterior region posteriorly (A—P), while retaining the original anteroposterior polarity of each region. Two sets of new ciliary structures then are formed in mirror-image arrangement, with the set in the P—A region oriented normally and the set in the A—P region undergoing a reversal of polarity along its anteroposterior axis. This sometimes creates end-to-end MI forms, but more commonly produces side-by-side MI-doublets through a folding together of the P—A and A—P regions. This folding occurs because one lateral edge of the cell had been removed during the operation; if the left edge was removed, the complex folds to the left and forms a buccal-adjoining MI-doublet, whereas if the right edge was removed, the complex folds to the right and forms a buccal-opposing MI-doublet. Both types can reorganize and later divide true-to-type, although the ‘buccal-opposing’ type is by far the more stable of the two. The generation of mirror-image forms is dependent on the prior abnormal juxtaposition of regions from opposite ends of the cell, and involves a coordinated respecification of large-scale organization. We interpret this response to be a consequence of intercalation of missing intervening positional values in the zone of posterior-anterior abutment.