Identification and characterization of a novel, evolutionarily conserved gene disrupted by the murine H beta 58 embryonic lethal transgene insertion

Development ◽  
1992 ◽  
Vol 115 (1) ◽  
pp. 277-288 ◽  
Author(s):  
J.J. Lee ◽  
G. Radice ◽  
C.P. Perkins ◽  
F. Costantini

The H beta 58 transgenic mouse line carries a recessive insertional mutation that results in developmental abnormalities beginning at day 7.5 p.c. and embryonic arrest at about day 9.5. In this paper, we describe the characterization of a novel gene encoded at the H beta 58 locus, whose disruption appears to be responsible for the mutant phenotype. The wild-type H beta 58 gene encodes a single 2.7 kb mRNA during embryonic and fetal development, and in many adult somatic tissues. In the mutant locus, this transcription unit is split by the transgene insertion, and one of its coding exons is deleted. Consistent with the physical disruption of the gene, the level of the H beta 58 mRNA in heterozygous mutant mouse tissues was half the normal level, indicating that the mutant allele fails to encode a stable mRNA. In situ hybridization studies revealed that expression of the wild-type H beta 58 gene begins in the oocyte, and continues throughout pre- and post-implantation embryogenesis, despite the fact that homozygous mutant embryos develop successfully through the egg cylinder stage (day 6.5 p.c.). In the early post-implantation embryo, expression of the normal H beta 58 gene is relatively low in the embryonic ectoderm, the tissue displaying the earliest phenotypic effects of the mutation, and highest in the visceral endoderm. We therefore propose that the effects of the mutation on the embryonic ectoderm may be exerted indirectly, via the visceral endoderm. Sequence analysis of H beta 58 cDNA clones revealed no homology between the 38 × 10(3) M(r) H beta 58 protein and other known proteins. However, the H beta 58 gene displayed extremely strong conservation between mammals and birds (greater than 96% amino acid identity), although it appeared less conserved in amphibians and invertebrates.

Development ◽  
1978 ◽  
Vol 43 (1) ◽  
pp. 289-313
Author(s):  
M. Dziadek ◽  
E. Adamson

The localization and synthesis of alphafoetoprotein (AFP) during mouse embryogenesis were studied by immunoperoxidase and by immunoprecipitation after radioactive labelling, using an antiserum prepared against AFP. AFP is first detectable in embryos on the 7th day of gestation (7th day embryos). In 7th and 8th day embryos AFP is confined to visceral (proximal) endoderm cells around the embryonic region of the egg cylinder. Visceral extra-embryonic and parietal (distal) endoderm cells do not contain AFP. By the 9th day of gestation AFP is also present in the extra-embryonic ectoderm, mesoderm and embryonic ectoderm cells around the three cavities of the embryo. These tissues do not synthesize AFP when cultured in isolation, but can adsorb AFP when it is added to the medium. On the 12th day of gestation AFP synthesis is confined to the endoderm layer of the visceral yolk sac. It is concluded that the ability to synthesize AFP is a property which is restricted to the visceral endoderm during early post-implantation development. The presence of AFP in other tissues of the embryo appears to be due to adsorption.


1993 ◽  
Vol 13 (12) ◽  
pp. 7813-7825 ◽  
Author(s):  
J A Lees ◽  
M Saito ◽  
M Vidal ◽  
M Valentine ◽  
T Look ◽  
...  

E2F is a transcription factor that helps regulate the expression of a number of genes that are important in cell proliferation. Recently, several laboratories have isolated a cDNA clone that encodes an E2F-like protein, known as E2F-1. Subsequent characterization of this protein showed that it had the properties of E2F, but it was difficult to account for all of the suggested E2F activities through the function of this one protein. Using low-stringency hybridization, we have isolated cDNA clones that encode two additional E2F-like proteins, called E2F-2 and E2F-3. The chromosomal locations of the genes for E2F-2 and E2F-3 were mapped to 1p36 and 6q22, respectfully, confirming their independence from E2F-1. However, the E2F-2 and E2F-3 proteins are closely related to E2F-1. Both E2F-2 and E2F-3 bound to wild-type but not mutant E2F recognition sites, and they bound specifically to the retinoblastoma protein in vivo. Finally, E2F-2 and E2F-3 were able to activate transcription of E2F-responsive genes in a manner that was dependent upon the presence of at least one functional E2F binding site. These observations suggest that the E2F activities described previously result from the combined action of a family of proteins.


1993 ◽  
Vol 13 (12) ◽  
pp. 7813-7825
Author(s):  
J A Lees ◽  
M Saito ◽  
M Vidal ◽  
M Valentine ◽  
T Look ◽  
...  

E2F is a transcription factor that helps regulate the expression of a number of genes that are important in cell proliferation. Recently, several laboratories have isolated a cDNA clone that encodes an E2F-like protein, known as E2F-1. Subsequent characterization of this protein showed that it had the properties of E2F, but it was difficult to account for all of the suggested E2F activities through the function of this one protein. Using low-stringency hybridization, we have isolated cDNA clones that encode two additional E2F-like proteins, called E2F-2 and E2F-3. The chromosomal locations of the genes for E2F-2 and E2F-3 were mapped to 1p36 and 6q22, respectfully, confirming their independence from E2F-1. However, the E2F-2 and E2F-3 proteins are closely related to E2F-1. Both E2F-2 and E2F-3 bound to wild-type but not mutant E2F recognition sites, and they bound specifically to the retinoblastoma protein in vivo. Finally, E2F-2 and E2F-3 were able to activate transcription of E2F-responsive genes in a manner that was dependent upon the presence of at least one functional E2F binding site. These observations suggest that the E2F activities described previously result from the combined action of a family of proteins.


Author(s):  
Joseph T. Keyes ◽  
Stacy Borowicz ◽  
Urs Utzinger ◽  
Mohamad Azhar ◽  
Jonathan P. Vande Geest

The use of transgenic mice is an incredibly powerful tool in understanding the underlying etiology of disease. To understand the usefulness of specific transgenic mice, the systems of interest should be characterized. We have created TGFβ2-deficient mouse fetuses that develop widespread aortic and coronary artery aneurysms [1]. Several studies have pointed to a strong connection between elevated TGFβ signaling and aortic aneurysm [2]. In situ hybridization has shown that Tgfb2 and Tgfb3 are major ligands expressed in the aortic medial wall. Further reduction of TGFβ signaling by combining TGFβ2- and TGFβ3-deficient mice exacerbated cardiovascular aneurysms in TGFβ2/TGFβ3-doubly deficient embryos. In vitro cell culture experiments demonstrated an impaired ability of TGFβ2-deficient mouse embryonic fibroblasts to reorganize collagen. Previous data indicate reduced levels of TGFβ2 leading to a higher susceptibility to aortic aneurysm. We present here the macroscopic biomechanical characterization of the aorta of a transgenic mouse line showing this susceptibility and compare it to wild-type mice. We also present results comparing the microstructure between mouse lines.


Genetics ◽  
1990 ◽  
Vol 126 (4) ◽  
pp. 1061-1069
Author(s):  
X B Peng ◽  
S M Mount

Abstract The white-apricot (wa) allele differs from the wild-type white gene by the presence of the retrovirus-like transposable element copia within the transcription unit. Most RNAs derived from wa have 3' termini within this insertion, and only small amounts of structurally normal RNA are produced. The activity of wa is reduced in trans by a semidominant mutation in the gene Enhancer-of-white-apricot (E(wa). Flies that are wa and heterozygous for the enhancer have eyes which are much lighter than the orange-yellow of wa alone while E(wa) homozygotes have white eyes. This semidominant effect on pigmentation is correlated with a corresponding decrease in white RNA having wild type structure, and flies homozygous for E(wa) have increased levels of aberrant RNAs. Three reverant alleles of E(wa) generated by reversion of the dominant enhancer phenotype with gamma radiation are noncomplementing recessive lethals, with death occurring during the larval stage. The effects on wa eye pigmentation of varying doses of the original E(wa) allele, the wild type allele, and the revertant alleles suggest that the original E(wa) allele produces a product that interferes with the activity of the wild type gene and that the revertants are null alleles. We propose that the E(wa) gene product influences the activity of the downstream copia long terminal repeat in 3' end formation.


Development ◽  
1998 ◽  
Vol 125 (16) ◽  
pp. 3015-3025 ◽  
Author(s):  
D. Dufort ◽  
L. Schwartz ◽  
K. Harpal ◽  
J. Rossant

During early embryogenesis, the transcription factor HNF3beta is expressed in visceral and definitive endoderm, node, notochord and floorplate. A targeted mutation in the HNF3β gene results in the lack of a definitive node and notochord. Furthermore, lack of HNF3beta results in failure of proper primitive streak elongation. To address whether HNF3beta is required in visceral endoderm, we have used tetraploid embryo-ES cell aggregations to generate chimeric mouse embryos with wild-type visceral endoderm and homozygous mutant HNF3beta embryonic ectoderm or vice versa. Replacing the visceral endoderm of mutant HNF3beta embryos rescued proper primitive streak elongation and, conversely, mutant visceral endoderm imposed a severe embryonic-extraembryonic constriction on wild-type embryonic ectoderm. Restoration of normal streak morphogenesis was not sufficient to allow formation of the node and notochord in HNF3beta mutant embryos. Thus, our results demonstrate that HNF3beta has two separate roles in primitive streak formation. One is to act within the visceral endoderm to promote proper streak morphogenesis. The second is autonomous to the node and its precursors and involves specification of node and notochord cell fates. HNF3beta mutant embryos rescued for the embryonic-extraembryonic constriction developed further than mutant embryos, allowing examination of later roles for HNF3beta. We show that such mutant embryos lack foregut and midgut endoderm. In addition, left-right asymmetry is affected in the mutant embryos.


2007 ◽  
Vol 45 (05) ◽  
Author(s):  
A Schnur ◽  
P Hegyi ◽  
V Venglovecz ◽  
Z Rakonczay ◽  
I Ignáth ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document