Integrin alpha subunit mRNAs are differentially expressed in early Xenopus embryos

Development ◽  
1993 ◽  
Vol 117 (4) ◽  
pp. 1239-1249 ◽  
Author(s):  
C.A. Whittaker ◽  
D.W. DeSimone

Adhesion of cells to extracellular matrix proteins is mediated, in large part, by transmembrane receptors of the integrin family. The identification of specific integrins expressed in early embryos is an important first step to understanding the roles of these receptors in developmental processes. We have used polymerase chain reaction methods and degenerate oligodeoxynucleotide primers to identify and clone Xenopus integrin alpha subunits from neurula-stage (stage 17) cDNA. Partial cDNAs encoding integrin subunits alpha 2, alpha 3, alpha 4, alpha 5, alpha 6 and an alpha IIb-related subunit were cloned and used to investigate integrin mRNA expression in early embryos by RNase protection assay and whole-mount in situ hybridization methods. Considerable integrin diversity is apparent early in development with integrins alpha 2, alpha 3, alpha 4, alpha 5 and alpha 6 each expressed by the end of gastrulation. Both alpha 3 and alpha 5 are expressed as maternal mRNAs. Zygotic expression of alpha 2, alpha 3, alpha 4 and alpha 6 transcripts begins during gastrulation. Integrin alpha 5 is expressed at relatively high levels during cleavage, blastula and gastrula stages suggesting that it may represent the major integrin expressed in the early embryo. We demonstrated previously that integrin beta 1 protein synthesis remains constant following induction of stage 8 animal cap cells with activin (Smith, J. C., Symes, K., Hynes, R. O. and DeSimone, D. W. (1990) Development 108, 289–298.). Here we report that integrin alpha 3, alpha 4 and alpha 6 mRNA levels increase following induction with 10 U/ml activin-A whereas alpha 5, beta 1 and beta 3 mRNA levels remain unchanged. Whole-mount in situ hybridization reveals that alpha 3 mRNAs are expressed by cells of the involuting mesoderm in the dorsal lip region of early gastrulae. As gastrulation proceeds, alpha 3 expression is localized to a stripe of presumptive notochordal cells along the dorsal midline. In neurulae, alpha 3 mRNA is highly expressed in the notochord but becomes progressively more restricted to the caudalmost portion of this tissue as development proceeds from tailbud to tadpole stages. In addition, alpha 3 is expressed in the forebrain region of later stage embryos. These data suggest that integrin-mediated adhesion may be involved in the process of mesoderm involution at gastrulation and the organization of tissues during embryogenesis.

1999 ◽  
Vol 276 (3) ◽  
pp. C621-C627 ◽  
Author(s):  
Yu Koyama ◽  
Tadashi Yamamoto ◽  
Tatsuo Tani ◽  
Kouei Nihei ◽  
Daisuke Kondo ◽  
...  

A family of water-selective channels, aquaporins (AQP), has been demonstrated in various organs and tissues. However, the localization and expression of the AQP family members in the gastrointestinal tract have not been entirely elucidated. This study aimed to demonstrate the expression and distribution of several types of the AQP family and to speculate on their role in water transport in the rat gastrointestinal tract. By RNase protection assay, expression of AQP1–5 and AQP8 was examined in various portions through the gastrointestinal tract. AQP1 and AQP3 mRNAs were diffusely expressed from esophagus to colon, and their expression was relatively intense in the small intestine and colon. In contrast, AQP4 mRNA was selectively expressed in the stomach and small intestine and AQP8 mRNA in the jejunum and colon. Immunohistochemistry and in situ hybridization demonstrated cellular localization of these AQP in these portions. AQP1 was localized on endothelial cells of lymphatic vessels in the submucosa and lamina propria throughout the gastrointestinal tract. AQP3 was detected on the circumferential plasma membranes of stratified squamous epithelial cells in the esophagus and basolateral membranes of cardiac gland epithelia in the lower stomach and of surface columnar epithelia in the colon. However, AQP3 was not apparently detected in the small intestine. AQP4 was present on the basolateral membrane of the parietal cells in the lower stomach and selectively in the basolateral membranes of deep intestinal gland cells in the small intestine. AQP8 mRNA expression was demonstrated in the absorptive columnar epithelial cells of the jejunum and colon by in situ hybridization. These findings may indicate that water crosses the epithelial layer through these water channels, suggesting a possible role of the transcellular route for water intake or outlet in the gastrointestinal tract.


Development ◽  
1983 ◽  
Vol 75 (1) ◽  
pp. 225-239
Author(s):  
William R. Jeffery ◽  
Linda J. Wilson

The distribution of mRNA in Chaetopterus pergamentaceus eggs was examined by in situ hybridization with poly(U) and specific cloned DNA probes. Eggs contain three distinct regions; the cortical ectoplasm, endoplasm, and a plasm released from the germinal vesicle (GV) during maturation. The ectoplasm of the mature egg showed a 15-fold enrichment in poly(A) and in histone and actin mRNAs relative to the endoplasm and the GV plasm after in situ hybridization. More than 90% of the total mass of egg poly (A) + RNA and histone and actin messages was estimated to be present in the ectoplasm. The mRNA molecules codistributed with ectoplasmic inclusion granules during ooplasmic segregation. During the extensive cytoplasmic rearrangements which occur at the time of the first cleavage the ectoplasm was divided into animal and vegetal portions. The animal portion was segregated evenly between the AB and CD blastomeres, whereas the vegetal portion entered the polar lobe and was preferentially segregated to the CD blastomere. Histone and actin mRNA entered both the AB and CD blastomeres of the 2-cell embryo. The results demonstrate that mRNA is quantitatively localized in the cortex of the Chaetopterus egg and early embryo.


1998 ◽  
Vol 159 (2) ◽  
pp. 331-340 ◽  
Author(s):  
JT Uilenbroek ◽  
AL Durlinger ◽  
M Tebar ◽  
P Kramer ◽  
RH van Schaik ◽  
...  

This study aimed to investigate the time course of disappearance of the mRNAs of the various subunits of inhibin in follicles which become atretic. An animal model was used in which atresia of preovulatory follicles could be studied in a chronological order. Injection of gonadotrophin-releasing hormone (GnRH) antagonist (20 microg) at the morning of pro-oestrus (P) blocked ovulation and the 10-12 preovulatory follicles became gradually atretic. A second injection was given the next day to prevent delayed ovulation. The rate of atresia could be delayed by simultaneous administration of a subovulatory dose of human chorionic gonadotrophin (hCG) (0.5 IU) and could be advanced by administration of a fivefold larger amount of GnRH antagonist. Functional activity of follicles becoming atretic was studied by measuring oestradiol production after incubation of individual follicles for 4 h. Follicles isolated 24 h after the first injection of GnRH antagonist (P+24) already secreted significantly less oestradiol in vitro than follicles isolated at pro-oestrus, although they were morphologically not different from pro-oestrous follicles. Follicles isolated at P+24 from hCG-treated rats secreted more oestradiol compared with follicles from rats not treated with hCG. In contrast, follicles isolated at P+24 from rats that were given a fivefold larger amount of GnRH antagonist secreted less oestradiol. Once this model was validated, temporal changes in inhibin subunit mRNAs in follicles undergoing atresia were measured by in situ hybridization and RNase protection assay. In situ hybridization showed abundant alpha- and betaA-subunit mRNA in the whole granulosa layer of preovulatory follicles at P and P+24, while betaB-subunit mRNA was restricted to the antral layer and cumulus. At P+48 the amount of alpha- and betaA-subunit mRNA had declined and was restricted to the cumulus, whereas betaB-subunit mRNA was absent. In the atretic follicles present at P+72 and P+96, mRNAs of all three inhibin subunits were absent. Administration of 0.5 IU hCG delayed the decline in the amount of alpha, betaA and betaB mRNA in preovulatory follicles at P+48. RNase protection assay of inhibin subunits in isolated follicles revealed no changes between P and P+24. However, at P+48, the mRNAs of alpha- and betaA-subunits were decreased. Expression of the mRNA of betaB-subunit declined gradually from P to P+48. The present study demonstrates that in follicles which are becoming atretic, mRNAs of alpha- and betaA-subunits decline simultaneously with the appearance of pycnotic cells in the granulosa layer, while betaB-subunit mRNA declines earlier, simultaneously with the decrease in the ability to secrete oestradiol in vitro.


1998 ◽  
Vol 274 (5) ◽  
pp. F932-F939 ◽  
Author(s):  
Gongyu Yang ◽  
Curt D. Sigmund

Transgenic mice containing the human angiotensinogen ( HAGT) gene were utilized to determine the developmental regulation of HAGT expression. RNase protection assay on total RNA obtained from whole transgenic fetuses revealed that HAGT expression was first detected at embryonic day 8.5( E8.5) and was abundant from E9.5 onward. The earliest expression of the HAGT transgene appeared to precede the earliest expression of the endogenous mouse AGT gene by 1–2 days. Northern blot analysis revealed moderate levels of HAGT mRNA in liver and kidney and low levels of HAGT mRNA in heart and brain from E16.5 ( day 16.5 of gestation) onward. HAGT mRNA in liver, although abundant during late gestation and in 2-wk-old and adult mice, decreased transiently around birth. In situ hybridization performed on sections from whole fetuses revealed that HAGTmRNA was restricted to the developing liver and heart between E9.5 and E11.5 but became more widespread to include the developing aorta, brain, subcutaneous tissues, and vertebra at E13.5. In situ hybridization analysis on fetal kidneys from late gestation, newborn, and 2-wk-old mice demonstrated a progressive restriction of HAGT mRNA to developing cortical proximal tubular cells. These data illustrate the developmental tissue-specific regulation of HAGTexpression and demonstrate that sequences present in the transgene can confer an appropriate developmental expression profile.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
S Greco ◽  
A Made' ◽  
A.S Tascini ◽  
J Garcia Manteiga ◽  
S Castelvecchio ◽  
...  

Abstract Background BACE1 encodes for β-secretase, the key enzyme involved in β-amyloid (βA) generation, a peptide well known for its involvement in Alzheimer's disease (AD). Of note, heart failure (HF) and AD share several risk factors and effectors. We recently showed that, in the heart of ischemic HF patients, the levels of both BACE1, its antisense RNA BACE1-AS and βA are all increased. BACE1-AS positively regulates the expression of BACE1, triggering βA intracellular accumulation, and its overexpression or βA administration induce cardiovascular-cell apoptosis. Aim To characterize the transcripts of the BACE1 locus and to investigate the molecular mechanisms underpinning BACE1-AS regulation of cell vitality. Methods By PCR and sequencing, we studied in the heart the expression of a variety of antisense BACE1 transcripts predicted by FANTOM CAT Epigenome. We studied BACE1 RNA stability by BrdU pulse chase experiments (BRIC assay). The cellular localization of BACE1-AS RNA was investigated by in situ hybridization assay. BACE1-AS binding RNAs were evaluated by BACE1-AS-MS2-Tag pull-down in AC16 cardiomyocytes followed by RNA-seq. Enriched RNAs were validated by qPCR and analysed by bioinformatics comparison with publicly available gene expression datasets of AD brains. Results We readily detected several antisense BACE1 transcripts expressed in AC16 cardiomyocytes; however, only BACE1-AS RNAs overlapping exon 6 of BACE1 positively regulated BACE1 mRNA levels, acting by increasing its stability. BACE1 silencing reverted cell apoptosis induced by BACE1-AS expression, indicating that BACE1 is a functional target of BACE1-AS. However, in situ hybridization experiments indicated a mainly nuclear localization for BACE1-AS, which displayed a punctuated distribution, compatible with chromatin association and indicative of potential additional targets. To identify other BACE1-AS binding RNAs, a BACE1-AS-MS2-tag pull-down was performed and RNA-seq of the enriched RNAs identified 698 BACE1-AS interacting RNAs in cardiomyocytes. Gene ontology of the BACE1-AS binding RNAs identified categories of relevance for cardiovascular or neurological diseases, such as dopaminergic synapse, glutamatergic synapse, calcium signalling pathway and voltage-gated channel activity. In spite of the differences between brain and heart transcriptomes, BACE1-AS-interacting RNAs identified in cardiomyocytes were significantly enriched in transcripts differentially expressed in AD brains as well as in RNAs expressed by enhancer genomic regions that are significantly hypomethylated in AD brains. Conclusions These data shed a new light on the complexity of BACE1-AS locus and on the existence of RNAs interacting with BACE1-AS with a potential as enhancer-RNAs. Moreover, the dysregulation of the BACE1-AS/BACE1/βA pathway may be a common disease mechanism shared by cardiovascular and neurological degenerative diseases. Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): Italian Health Ministery_Ricerca Corrente 2020


2004 ◽  
Vol 229 (3) ◽  
pp. 651-657 ◽  
Author(s):  
Nathaniel Denkers ◽  
Pilar García-Villalba ◽  
Christopher K. Rodesch ◽  
Kandice R. Nielson ◽  
Teri Jo Mauch

1990 ◽  
Vol 111 (6) ◽  
pp. 2693-2701 ◽  
Author(s):  
J N Feder ◽  
C J Guidos ◽  
B Kusler ◽  
C Carswell ◽  
D Lewis ◽  
...  

Fetal liver or bone marrow-derived T lymphocyte precursors undergo extensive, developmentally regulated proliferation in response to inductive signals from the thymic microenvironment. We have used neonatal mouse thymocytes size-separated by centrifugal elutriation to study the cell cycle stage-specific expression of several genes associated with cell proliferation. These include genes involved in the biosynthesis of deoxyribonucleotide precursors, such as dihydrofolate reductase (DHFR), thymidylate synthase (TS), and the M1 and M2 subunits of ribonucleotide reductase, as well as c-myc, a cellular oncogene of unknown function. Using nuclear run-on assays, we observed that the transcription rates for these genes, with the exception of TS, are essentially invariant not only throughout the cell cycle in proliferating cells, but also in noncycling (G0) cells. The TS gene showed a transient increase in transcription rate in cells which bordered between a proliferating and nonproliferating status. Studies of an elutriated T cell line, S49.1, yielded similar results, indicating that the process of immortalization has not affected the transcriptional regulation of these genes. Analysis of steady-state mRNA levels using an RNase protection assay demonstrated that the levels of DHFR and TS mRNA accumulate as thymocytes progress through the cell cycle. In contrast, only the M2 subunit of ribonucleotide reductase showed cyclic regulation. Finally, in contrast to cultured cell models, we observed an abrupt fivefold increase in the steady-state level of c-myc mRNA in the transition from G1 to S-phase. We conclude from these studies that the transcriptional regulation of specific genes necessary for cellular proliferation is a minor component of the developmental modulation of the thymocyte cell cycle.


1992 ◽  
Vol 68 (3) ◽  
pp. 756-766 ◽  
Author(s):  
T. M. Perney ◽  
J. Marshall ◽  
K. A. Martin ◽  
S. Hockfield ◽  
L. K. Kaczmarek

1. The gene for a mammalian Shaw K+ channel has recently been cloned and has been shown, by alternative splicing, to give rise to two different transcripts, Kv3.1 alpha and Kv3.1 beta. To determine whether these channels are associated with specific types of neurons and to determine whether or not the alternately spliced K+ channel variants are differentially expressed, we used ribonuclease (RNase) protection assays and in situ hybridization histochemistry to localize the specific subsets of neurons containing Kv3.1 alpha and Kv3.1 beta mRNAs in the adult and developing rat brain. 2. In situ hybridization histochemistry revealed a heterogeneous expression pattern of Kv3.1 alpha mRNA in the adult rat brain. Highest Kv3.1 alpha mRNA levels were expressed in the cerebellum. High levels of hybridization were also detected in the globus pallidus, subthalamus, and substantia nigra reticulata. Many thalamic nuclei, but in particular the reticular thalamic nucleus, hybridized well to Kv3.1 alpha-specific probes. A subpopulation of cells in the cortex and hippocampus, which by their distribution and number may represent interneurons, were also found to contain high levels of Kv3.1 alpha mRNA. In the brain stem, many nuclei, including the inferior colliculus and the cochlear and vestibular nuclei, also express Kv3.1 alpha mRNA. Low or undetectable levels of Kv3.1 alpha mRNA were found in the caudate-putamen, olfactory tubercle, amygdala, and hypothalamus. 3. Kv3.1 beta mRNA was also detected in the adult rat brain by both RNase protection assays and by in situ hybridization experiments. Although the beta splice variant is expressed at lower levels than the alpha species, the overall expression pattern for both mRNAs is similar, indicating that both splice variants co-expressed in the same neurons. 4. The expression of Kv3.1 alpha and Kv3.1 beta transcripts was examined throughout development. Kv3.1 alpha mRNA is detected as early as embryonic day 17 and then increases gradually until approximately postnatal day 10, when there is a large increase in the amount of Kv3.1 alpha mRNA. Interestingly, the expression of Kv3.1 beta mRNA only increases gradually during the developmental time frame examined. Densitometric measurements indicated that Kv3.1 alpha is the predominant splice variant found in neurons of the adult brain, whereas Kv3.1 beta appears to be the predominant species in embryonic and perinatal neurons. 5. Most of the neurons that express the Kv3.1 transcripts have been characterized electrophysiologically to have narrow action potentials and display high-frequency firing rates with little or no spike adaptation.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document