scholarly journals Morphogenesis of the C. elegans hermaphrodite uterus

Development ◽  
1996 ◽  
Vol 122 (11) ◽  
pp. 3617-3626 ◽  
Author(s):  
A.P. Newman ◽  
J.G. White ◽  
P.W. Sternberg

We have undertaken electron micrographic reconstruction of the Caenorhabditis elegans hermaphrodite uterus and determined the correspondence between cells defined by their lineage history and differentiated cell types. In this organ, many cells do not move during morphogenesis and the cell lineage may function to put cells where they are needed. Differentiated uterine cell types include the toroidal ut cells that make structural epithelium, and specialized utse and uv cells that make the connection between the uterus and the vulva. A cell fate decision in which the anchor cell (AC) induces adjacent ventral uterine intermediate precursor cells to adopt the pi fate, rather than the ground state rho, has profound consequences for terminal differentiation: all pi progeny are directly involved in making the uterine-vulval connection whereas all rho progeny contribute to ut toroids or the uterine-spermathecal valve. In addition to specifying certain uterine cell fates, the AC also induces the vulva. Its multiple inductions thereby function to coordinate the connection of an internal to an external epithelium. The AC induces the pi cells and ultimately fuses with a subset of their progeny. This is an example of reciprocal cell-cell interaction that can be studied at single cell resolution. The AC is thus a transitory cell type that plays a pivotal role in organizing the morphogenesis of the uterine-vulval connection.

Science ◽  
2019 ◽  
Vol 366 (6461) ◽  
pp. 116-120 ◽  
Author(s):  
Nathan D. Lord ◽  
Thomas M. Norman ◽  
Ruoshi Yuan ◽  
Somenath Bakshi ◽  
Richard Losick ◽  
...  

Cell fate decision circuits must be variable enough for genetically identical cells to adopt a multitude of fates, yet ensure that these states are distinct, stably maintained, and coordinated with neighboring cells. A long-standing view is that this is achieved by regulatory networks involving self-stabilizing feedback loops that convert small differences into long-lived cell types. We combined regulatory mutants and in vivo reconstitution with theory for stochastic processes to show that the marquee features of a cell fate switch in Bacillus subtilis—discrete states, multigenerational inheritance, and timing of commitments—can instead be explained by simple stochastic competition between two constitutively produced proteins that form an inactive complex. Such antagonistic interactions are commonplace in cells and could provide powerful mechanisms for cell fate determination more broadly.


2019 ◽  
Vol 29 (18) ◽  
pp. 3094-3100.e4 ◽  
Author(s):  
Michelle A. Attner ◽  
Wolfgang Keil ◽  
Justin M. Benavidez ◽  
Iva Greenwald

Cell ◽  
1989 ◽  
Vol 57 (7) ◽  
pp. 1237-1245 ◽  
Author(s):  
Geraldine Seydoux ◽  
Iva Greenwald

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tim Liebisch ◽  
Armin Drusko ◽  
Biena Mathew ◽  
Ernst H. K. Stelzer ◽  
Sabine C. Fischer ◽  
...  

AbstractDuring the mammalian preimplantation phase, cells undergo two subsequent cell fate decisions. During the first decision, the trophectoderm and the inner cell mass are formed. Subsequently, the inner cell mass segregates into the epiblast and the primitive endoderm. Inner cell mass organoids represent an experimental model system, mimicking the second cell fate decision. It has been shown that cells of the same fate tend to cluster stronger than expected for random cell fate decisions. Three major processes are hypothesised to contribute to the cell fate arrangements: (1) chemical signalling; (2) cell sorting; and (3) cell proliferation. In order to quantify the influence of cell proliferation on the observed cell lineage type clustering, we developed an agent-based model accounting for mechanical cell–cell interaction, i.e. adhesion and repulsion, cell division, stochastic cell fate decision and cell fate heredity. The model supports the hypothesis that initial cell fate acquisition is a stochastically driven process, taking place in the early development of inner cell mass organoids. Further, we show that the observed neighbourhood structures can emerge solely due to cell fate heredity during cell division.


PLoS Genetics ◽  
2012 ◽  
Vol 8 (6) ◽  
pp. e1002732 ◽  
Author(s):  
Sudeep D. Agarwala ◽  
Hannah G. Blitzblau ◽  
Andreas Hochwagen ◽  
Gerald R. Fink

Nature ◽  
2006 ◽  
Vol 439 (7075) ◽  
pp. 502-502
Author(s):  
Alejandro Colman-Lerner ◽  
Andrew Gordon ◽  
Eduard Serra ◽  
Tina Chin ◽  
Orna Resnekov ◽  
...  

Development ◽  
2002 ◽  
Vol 129 (7) ◽  
pp. 1763-1774 ◽  
Author(s):  
Scott Cameron ◽  
Scott G. Clark ◽  
Joan B. McDermott ◽  
Eric Aamodt ◽  
H. Robert Horvitz

During Caenorhabditis elegans development, the patterns of cell divisions, cell fates and programmed cell deaths are reproducible from animal to animal. In a search for mutants with abnormal patterns of programmed cell deaths in the ventral nerve cord, we identified mutations in the gene pag-3, which encodes a zinc-finger transcription factor similar to the mammalian Gfi-1 and Drosophila Senseless proteins. In pag-3 mutants, specific neuroblasts express the pattern of divisions normally associated with their mother cells, producing with each reiteration an abnormal anterior daughter neuroblast and an extra posterior daughter cell that either terminally differentiates or undergoes programmed cell death, which accounts for the extra cell corpses seen in pag-3 mutants. In addition, some neurons do not adopt their normal fates in pag-3 mutants. The phenotype of pag-3 mutants and the expression pattern of the PAG-3 protein suggest that in some lineages pag-3 couples the determination of neuroblast cell fate to subsequent neuronal differentiation. We propose that pag-3 counterparts in other organisms determine blast cell identity and for this reason may lead to cell lineage defects and cell proliferation when mutated.


Development ◽  
1995 ◽  
Vol 121 (10) ◽  
pp. 3175-3185 ◽  
Author(s):  
M.Q. Martindale ◽  
J.Q. Henry

The nemerteans belong to a phylum of coelomate worms that display a highly conserved pattern of cell divisions referred to as spiral cleavage. It has recently been shown that the fates of the four embryonic cell quadrants in two species of nemerteans are not homologous to those in other spiralian embryos, such as the annelids and molluscs (Henry, J. Q. and Martindale, M. Q. (1994a) Develop. Genetics 15, 64–78). Equal-cleaving molluscs utilize inductive interactions to establish quadrant-specific cell fates and embryonic symmetry properties following fifth cleavage. In order to elucidate the manner in which cell fates are established in nemertean embryos, we have conducted cell isolation and deletion experiments to examine the developmental potential of the early cleavage blastomeres of two equal-cleaving nemerteans, Nemertopsis bivittata and Cerebratulus lacteus. These two species display different modes of development: N. bivittata develops directly via a non-feeding larvae, while C. lacteus develops to form a feeding pilidium larva which undergoes a radical metamorphosis to give rise to the juvenile worm. By examining the development of certain structures and cell types characteristic of quadrant-specific fates for each of these species, we have shown that isolated blastomeres of the indirect-developing nemertean, C. lacteus, are capable of generating cell fates that are not a consequence of that cell's normal developmental program. For instance, dorsal blastomeres can form muscle fibers when cultured in isolation. In contrast, isolated blastomeres of the direct-developing species, N. bivittata do not regulate their development to the same extent. Some cell fates are specified in a precocious manner in this species, such as those that give rise to the eyes. Thus, these findings indicate that equal-cleaving spiralian embryos can utilize different mechanisms of cell fate and axis specification. The implications of these patterns of nemertean development are discussed in relation to experimental work in other spiralian embryos, and a model is presented that accounts for possible evolutionary changes in cell lineage and the process of cell fate specification amongst these protostome phyla.


Sign in / Sign up

Export Citation Format

Share Document