Two distinct endothelial lineages in ontogeny, one of them related to hemopoiesis

Development ◽  
1996 ◽  
Vol 122 (5) ◽  
pp. 1363-1371 ◽  
Author(s):  
L. Pardanaud ◽  
D. Luton ◽  
M. Prigent ◽  
L.M. Bourcheix ◽  
M. Catala ◽  
...  

We have shown previously by means of quail/chick transplantations that external and visceral organs, i.e., somatopleural and splanchnopleural derivatives, acquire their endothelial network through different mechanisms, namely immigration (termed angiogenesis) versus in situ emergence of precursors (or vasculogenesis). We have traced the distribution of QH1-positive cells in chick hosts after replacement of the last somites by quail somites (orthotopic grafts) or lateral plate mesoderm (heterotopic grafts). The results lead to the conclusion that the embryo becomes vascularized by endothelial precursors from two distinct regions, splanchnopleural mesoderm and paraxial mesoderm. The territories respectively vascularized are complementary, precursors from the paraxial mesoderm occupy the body wall and kidney, i.e., they settle along with the other paraxial mesoderm derivatives and colonize the somatopleure. The precursors from the two origins have distinct recognition and potentialities properties: endothelial precursors of paraxial origin are barred from vascularizing visceral organs and from integrating into the floor of the aorta, and are never associated with hemopoiesis; splanchnopleural mesoderm grafted in the place of somites, gives off endothelial cells to body wall and kidney but also visceral organs. It gives rise to hemopoietic precursors in addition to endothelial cells.

Author(s):  
Pankaj Sahai-Hernandez ◽  
Claire Pouget ◽  
Ondřej Svoboda ◽  
David Traver

AbstractDevelopment of the dorsal aorta is a key step in the establishment of the adult blood-forming system, since hematopoietic stem and progenitor cells (HSPCs) arise from ventral aortic endothelium in all vertebrate animals studied. Work in zebrafish has demonstrated that arterial and venous endothelial precursors arise from distinct subsets of lateral plate mesoderm. Earlier studies in the chick showed that paraxial mesoderm generates another subset of endothelial cells that incorporate into the dorsal aorta to replace HSPCs as they exit the aorta and enter circulation. Here we show that a similar process occurs in the zebrafish, where a population of endothelial precursors delaminates from the somitic dermomyotome to incorporate exclusively into the developing dorsal aorta. Whereas somite-derived endothelial cells (SDECs) lack hematopoietic potential, they act as local niche to support the emergence of HSPCs from neighboring hemogenic endothelium. Thus, at least three subsets of endothelial cells (ECs) contribute to the developing dorsal aorta: vascular ECs, hemogenic ECs, and SDECs. Taken together, our findings indicate that the distinct spatial origins of endothelial precursors dictate different cellular potentials within the developing dorsal aorta.


Development ◽  
2002 ◽  
Vol 129 (16) ◽  
pp. 3873-3885 ◽  
Author(s):  
Sara J. Venters ◽  
Charles P. Ordahl

The dorsomedial lip (DML) of the somite dermomyotome is the source of cells for the early growth and morphogenesis of the epaxial primary myotome and the overlying dermomyotome epithelium. We have used quail-chick transplantation to investigate the mechanistic basis for DML activity. The ablated DML of chick wing-level somites was replaced with tissue fragments from various mesoderm regions of quail embryos and their capacity to form myotomal tissue assessed by confocal microscopy. Transplanted fragments from the epithelial sheet region of the dermomyotome exhibited full DML growth and morphogenetic capacity. Ventral somite fragments (sclerotome), head paraxial mesoderm or non-paraxial (lateral plate) mesoderm tested in this assay were each able to expand mitotically in concert with the surrounding paraxial mesoderm, although no myogenic potential was evident. When ablated DMLs were replaced with fragments of the dermomyotome ventrolateral lip of wing-level somites or pre-somitic mesoderm (segmental plate), myotome development was evident but was delayed or otherwise limited in some cases. Timed DML ablation-replacement experiments demonstrate that DML activity is progressive throughout the embryonic period (to at least E7) and its continued presence is necessary for the complete patterning of each myotome segment. The results of serial transplantation and BrdU pulse-chase experiments are most consistent with the conclusion that the DML consists of a self-renewing population of progenitor cells that are the primary source of cells driving the growth and morphogenesis of the myotome and dermomyotome in the epaxial domain of the body.


Author(s):  
Boryeong Pak ◽  
Christopher E. Schmitt ◽  
Woosoung Choi ◽  
Jun-Dae Kim ◽  
Orjin Han ◽  
...  

Endothelial cells appear to emerge from diverse progenitors. However, to which extent their developmental origin contributes to define their cellular and molecular characteristics remains largely unknown. Here, we report that a subset of endothelial cells that emerge from the tailbud possess unique molecular characteristics that set them apart from stereotypical lateral plate mesoderm (LPM)-derived endothelial cells. Lineage tracing shows that these tailbud-derived endothelial cells arise at mid-somitogenesis stages, and surprisingly do not require Npas4l or Etsrp function, indicating that they have distinct spatiotemporal origins and are regulated by distinct molecular mechanisms. Microarray and single cell RNA-seq analyses reveal that somitogenesis- and neurogenesis-associated transcripts are over-represented in these tailbud-derived endothelial cells, suggesting that they possess a unique transcriptomic signature. Taken together, our results further reveal the diversity of endothelial cells with respect to their developmental origin and molecular properties, and provide compelling evidence that the molecular characteristics of endothelial cells may reflect their distinct developmental history.


Development ◽  
1999 ◽  
Vol 126 (18) ◽  
pp. 4129-4138 ◽  
Author(s):  
N. Funayama ◽  
Y. Sato ◽  
K. Matsumoto ◽  
T. Ogura ◽  
Y. Takahashi

Most triploblastic animals including vertebrates have a coelomic cavity that separates the outer and inner components of the body. The coelom is lined by two different tissue components, somatopleure and splanchnopleure, which are derived from the lateral plate region. Thus, the coelom is constructed as a result of a binary decision during early specification of the lateral plate. In this report we studied the molecular mechanisms of this binary decision. We first demonstrate that the splitting of the lateral plate into the two cell sheets progresses in an anteroposterior order and this progression is not coordinated with that of the somitic segmentation. By a series of embryological manipulations we found that young splanchnic mesoderm is still competent to be respecified as somatic mesoderm, and the ectoderm overlying the lateral plate is sufficient for this redirection. The lateral ectoderm is also required for maintenance of the somatic character of the mesoderm. Thus, the ectoderm plays at least two roles in the early subdivision of the lateral plate: specification and maintenance of the somatic mesoderm. We also show that the latter interactions are mediated by BMP molecules that are localized in the lateral ectoderm. Evolutionary aspects of the coelom formation are also considered.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3695-3695
Author(s):  
Andrew C. Perkins ◽  
Dinushka Gunaratnam ◽  
Melissa R. Gardiner ◽  
Kathleen C. Robinson

Abstract The process of forming a lumenised vessel from an angioblast cord is a crucial part of both vasculogenesis and angiogenesis. The Krüppel like factors (klfs) are a family of zinc finger transcription factors which play important roles in many aspects of differentiation. Klf2 knockout mice die in utero from haemorrhaging due to arterial wall defects. Due to the similarity of vascular and haematopoietic systems to those of mammals, the zebrafish was chosen as a model in which to study the function of klf12, the only zebrafish representative of the repressor subfamily of mammalian klfs which includes klf3, klf8 and klf12. Klf12 is first detected by WISH at 12 somites in the lateral plate mesoderm (LPM) and continues in these cells as they from the ICM at 18–22hpf, the site of vasculogenesis and haematopoiesis. From 24hpf klf12 is expressed in short stripes extending from the ICM dorsally towards the notochord. This expression pattern is similar but not identical to that of fli1 and flk1, two vascular markers. Expression subsequently decreases and is absent by 30hpf. Targeted knockdown of klf12 by translantion-inhibiting and splicing morpholinos (MOs) produces a vascular defect. At 24hpf morphants display correct expression of primitive blood, kidney and vascular markers such as gata1, βE3globin, biklf, pax2.1 and fli1. However, circulation is absent in 65% of embryos at 48 hpf and reduced in most, as seen by both brightfield microscopy and fluorescent microbead microangiography. Embryos also display a slower heartbeat, pericardial oedema and oedema over the yolk/duct of Cuvier, all likely to be secondary effects due to the circulatory defect. Injection of klf12 MOs into fli1-eGFP transgenic embryos reveals correct differentiation of endothelial cells, but disorganised angiogenesis. In summary, klf12 morphants display correct specification of angioblasts and differentiation of endothelial cells but a defect in tubulogenesis of endothelial cords.


2009 ◽  
Vol 102 (12) ◽  
pp. 1057-1063 ◽  
Author(s):  
Christian Sinzger ◽  
Barbara Adler

SummaryEndothelial cells (EC) are assumed to play a central role in the spread of human cytomegalovirus (HCMV) throughout the body. Results from in-situ analyses of infected tissues and data from cell culture systems together strongly suggest that vascular EC can support productive replication of HCMV and thus contribute to its haematogeneous dissemination. By inducing an angiogenic response, HCMV may even promote growth of its own habitat. The particular role of EC is further supported by the fact that entry of HCMV into EC is dependent on a complex of the envelope glycoproteins gH and gL with a set of proteins (UL128–131A) which is dispensable for HCMV entry into most other cell types. These molecular requirements may also be reflected by cell type-dependent differences in entry routes, i.e. endocytosis versus fusion at the plasma membrane. An animal model with trackable murine CMV is now available to clarify the pathogenetic role of EC during haematogeneous dissemination of this virus.


2020 ◽  
Author(s):  
Shunsaku Homma ◽  
Takako Shimada ◽  
Ikuo Wada ◽  
Katsuji Kumaki ◽  
Noboru Sato ◽  
...  

ABSTRACTOne of the decisive questions about human gross anatomy is unmatching the adult branching pattern of the spinal nerve to the embryonic lineages of the peripheral target muscles. The two principal branches in the adult anatomy, the dorsal and ventral rami of the spinal nerve, innervate the intrinsic back muscles (epaxial muscles), as well as the body wall and appendicular muscles (hypaxial muscles), respectively. However, progenitors from the dorsomedial myotome develop into the back and proximal body wall muscles (primaxial muscles) within the sclerotome-derived connective tissue environment. In contrast, those from the ventrolateral myotome develop into the distal body wall and appendicular muscles (abaxial muscles) within the lateral plate-derived connective tissue environment. Thus, the ventral rami innervate muscles that belong to two different embryonic compartments. Because strict correspondence between an embryonic compartment and its cognate innervation is a way to secure the development of functional neuronal circuits, this mismatch indicates that we may need to reconcile our current understanding of the branching pattern of the spinal nerve with regard to embryonic compartments. Accordingly, we first built a model for the branching pattern of the spinal nerve, based on the primaxial-abaxial distinction, and then validated it using mouse embryos.In our model, we hypothesized the following: 1) a single spinal nerve consists of three nerve components: primaxial compartment-responsible branches, a homologous branch to the canonical intercostal nerve bound for innervation to the abaxial compartment in the ventral body wall, and a novel class of nerves that travel along the lateral cutaneous branch to the appendicles; 2) the three nerve components are discrete only during early embryonic periods but are later modified into the elaborate adult morphology; and 3) each of the three components has its own unique morphology regarding trajectory and innervation targets. Notably, the primaxial compartment-responsible branches from the ventral rami have the same features as the dorsal rami. Under the above assumptions, our model comprehensively describes the logic for innervation patterns when facing the intricate anatomy of the spinal nerve in the human body.In transparent whole-mount specimens of embryonic mouse thoraces, the single thoracic spinal nerve in early developmental periods trifurcated into superficial, deep, and lateral cutaneous branches; however, it later resembled the adult branching pattern by contracting the superficial branch. The superficial branches remained segmental while the other two branches were free from axial restriction. Injection of a tracer into the superficial branches of the intercostal nerve labeled Lhx3-positive motoneurons in the medial portion of the medial motor column (MMCm). However, the injection into the deep branches resulted in retrograde labeling of motoneurons that expressed Oct6 in the lateral portion of the medial motor column (MMCl). Collectively, these observations on the embryonic intercostal nerve support our model that the spinal nerve consists of three distinctive components.We believe that our model provides a framework to conceptualize the innervation pattern of the spinal nerve based on the distinction of embryonic mesoderm compartments. Because such information about the spinal nerves is essential, we further anticipate that our model will provide new insights into a broad range of research fields, from basic to clinical sciences.


2008 ◽  
Vol 136 (Suppl. 4) ◽  
pp. 316-322 ◽  
Author(s):  
Marija Dakovic-Bjelakovic ◽  
Vojin Savic ◽  
Slobodan Vlajkovic ◽  
Tanja Dzopalic

Glomerulus is an important filtrating apparatus in the body. Three types of cells - endothelial, mesangial and visceral epithelial cells can be identified in the capillary tuft. Glomeruli develop during nephrogenesis which starts in the 8th week and ends between the 32nd and 36th week of gestation. The nephron develops through stages described as the vesicle, the comma-shaped, S-shaped with the developing glomerulus and the mature glomerulus. Glomerular differentiation involves the expansion of the original capillary component into the plexus that consists of 6-8 loops and the migration of podocytes that are arranged around these glomerular capillaries. Glomerular capillary differentiation represents a set of developmental changes of the glomerular endothelial and epithelial cells. The active differentiation of glomerular capillaries starts in the hemisphere of an inferior arm of S-shaped bodies. Endothelial precursors unite into precapillaries devoid of lumen. Further differentiation includes the flattening of endothelial cells on the basement membrane, the loss of superfluous cells, the development of lumen and the formation of fenestrae. The glomerular basement membrane is differentiated by the fusion of epithelial and endothelial basement membrane. The differentiation of visceral epithelial cells includes the development of cytoplasmic processes and the flattening of cell bodies. Primary cytoplasmic processes are formed from the podocyte bodies and develop secondary and tertiary processes or foot processes. Foot processes from one podocyte interdigitate with foot processes from other podocytes. In the developing glomeruli, there is a difference in the level of differentiation of visceral epithelial cells. Cells with differentiated foot processes and cells with no cytoplasmic processes are observed within the same glomerulus.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1461-1461
Author(s):  
Martina Konantz ◽  
Martijn H. Brugman ◽  
In-Hyun Park ◽  
George Q. Daley ◽  
Christiane Nuesslein-Volhard ◽  
...  

Abstract Abstract 1461 Poster Board I-484 The ecotropic viral integration site-1 (Evi-1) locus was originally identified as a common site of retroviral integration in murine myeloid tumors and was later shown to be one of the most potent oncogenenes associated with murine and human myeloid leukemia. More recent data suggest involvement of Evi-1 in embryonic hematopoiesis (Goyama et al, Cell Stem Cell 2008; Yuasa et al, EMBO J, 2005), yet the precise role and molecular regulation of Evi-1 during blood development remains poorly understood. The zebrafish model offers powerful tools for genetic and embryonic studies. Here, we study zebrafish embryonic development and human pluripotent stem cells to understand how evi-1 modulates early hematopoietic development. Loss-of-function studies were performed in vivo by injecting Morpholino oligonucleotides in zebrafish zygotes to inhibit evi-1 pre-mRNA splicing. To control for off-target effects, two separate morpholinos were designed and injected. N=100 zebrafish were analysed pro experiment in each group. Inhibition of evi-1 was confirmed by quantitative PCR comparison in morpholino-injected and control embryos. Hematopoietic development was followed in both morphants and wild-type embryos by simple microscopy and in situ hybridizations using known hematopoeitic markers in order to investigate the developmental time-point in which evi-1 regulates blood development. evi-1 morpholino injected zebrafisch embryo showed severely reduced numbers of circulating blood cells, consistent with the phenotype observed in Evi-1−/− mice. Additionally, hemorrhages were observed, suggesting concomittant defects of the endothelial lineage in evi-1 deficient fish. In situ hybridization analysis on 11-12 somite stage embryos revealed strong reduction of myeloid embryonic hematopoiesis (measured by pu.1 expression in the anterior lateral plate mesoderm), while no change was observed in primitive erythroid progenitor cells (monitored by gata1 expression) or overall in blood and endothelial precursors in the posterior lateral plate mesoderm (as monitored by scl expression). Taken together, our studies demonstrate a strong impact of evi-1 on zebrafish blood development, confirming the results from Evi-1−/− mice. As gata1 expression and therefore erythroid precursor cells in the posterior blood islands are unaffected in evi-1 morphants, our results support the hypothesis that the reduction of primitive yolk-sac erythrocytes in mutant mice was caused from hemorrhages from pericardial effusions. Since erythroid and myeloid cells derive from a common precursor, but gata1 expression was unaffected in knock-down embryos, we anticipate that evi-1 plays a specific role in the myeloid lineage, as shown by abolished pu.1 expression in the anterior LPM. evi-1 therefore probably affects differentiation, survival or proliferation of myeloid cells. Previous reports in adult hematopoietic cells show that evi-1 can interact with both gata1 and pu.1. However, our data suggest that this is not the case during embryonic development, since gata1 expression remained unaltered in morpholino-injected embryos. Furthermore, data in mice suggest that Evi-1 may modulate embryonic hematopoiesis by affecting hematopoietic stem cell proliferation through regulation of Gata2. Currently ongoing experiments in our laboratories focus on characterization of genetic interactions between evi-1, gata2 and pu.1 during zebrafish blood development. Amongst other, gata2 and respectively pu.1 mRNA are co-injected in evi-1 morphants to analyse whether they can rescue the blood phenotype. Moreover, selected findings in zebrafish embryonic development will be verified in the human using using in vitro differentiating human induced pluripotent stem (iPS) cells. First expression data generated by real-time PCR analysis showed differential expression of EVI-1 in embryoid bodies generated from human iPS cells, confirming our hypothesis that EVI-1 has specific effects during human blood development. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document