Persistent myogenic capacity of the dermomyotome dorsomedial lip and restriction of myogenic competence

Development ◽  
2002 ◽  
Vol 129 (16) ◽  
pp. 3873-3885 ◽  
Author(s):  
Sara J. Venters ◽  
Charles P. Ordahl

The dorsomedial lip (DML) of the somite dermomyotome is the source of cells for the early growth and morphogenesis of the epaxial primary myotome and the overlying dermomyotome epithelium. We have used quail-chick transplantation to investigate the mechanistic basis for DML activity. The ablated DML of chick wing-level somites was replaced with tissue fragments from various mesoderm regions of quail embryos and their capacity to form myotomal tissue assessed by confocal microscopy. Transplanted fragments from the epithelial sheet region of the dermomyotome exhibited full DML growth and morphogenetic capacity. Ventral somite fragments (sclerotome), head paraxial mesoderm or non-paraxial (lateral plate) mesoderm tested in this assay were each able to expand mitotically in concert with the surrounding paraxial mesoderm, although no myogenic potential was evident. When ablated DMLs were replaced with fragments of the dermomyotome ventrolateral lip of wing-level somites or pre-somitic mesoderm (segmental plate), myotome development was evident but was delayed or otherwise limited in some cases. Timed DML ablation-replacement experiments demonstrate that DML activity is progressive throughout the embryonic period (to at least E7) and its continued presence is necessary for the complete patterning of each myotome segment. The results of serial transplantation and BrdU pulse-chase experiments are most consistent with the conclusion that the DML consists of a self-renewing population of progenitor cells that are the primary source of cells driving the growth and morphogenesis of the myotome and dermomyotome in the epaxial domain of the body.

Development ◽  
1996 ◽  
Vol 122 (5) ◽  
pp. 1363-1371 ◽  
Author(s):  
L. Pardanaud ◽  
D. Luton ◽  
M. Prigent ◽  
L.M. Bourcheix ◽  
M. Catala ◽  
...  

We have shown previously by means of quail/chick transplantations that external and visceral organs, i.e., somatopleural and splanchnopleural derivatives, acquire their endothelial network through different mechanisms, namely immigration (termed angiogenesis) versus in situ emergence of precursors (or vasculogenesis). We have traced the distribution of QH1-positive cells in chick hosts after replacement of the last somites by quail somites (orthotopic grafts) or lateral plate mesoderm (heterotopic grafts). The results lead to the conclusion that the embryo becomes vascularized by endothelial precursors from two distinct regions, splanchnopleural mesoderm and paraxial mesoderm. The territories respectively vascularized are complementary, precursors from the paraxial mesoderm occupy the body wall and kidney, i.e., they settle along with the other paraxial mesoderm derivatives and colonize the somatopleure. The precursors from the two origins have distinct recognition and potentialities properties: endothelial precursors of paraxial origin are barred from vascularizing visceral organs and from integrating into the floor of the aorta, and are never associated with hemopoiesis; splanchnopleural mesoderm grafted in the place of somites, gives off endothelial cells to body wall and kidney but also visceral organs. It gives rise to hemopoietic precursors in addition to endothelial cells.


Author(s):  
Pankaj Sahai-Hernandez ◽  
Claire Pouget ◽  
Ondřej Svoboda ◽  
David Traver

AbstractDevelopment of the dorsal aorta is a key step in the establishment of the adult blood-forming system, since hematopoietic stem and progenitor cells (HSPCs) arise from ventral aortic endothelium in all vertebrate animals studied. Work in zebrafish has demonstrated that arterial and venous endothelial precursors arise from distinct subsets of lateral plate mesoderm. Earlier studies in the chick showed that paraxial mesoderm generates another subset of endothelial cells that incorporate into the dorsal aorta to replace HSPCs as they exit the aorta and enter circulation. Here we show that a similar process occurs in the zebrafish, where a population of endothelial precursors delaminates from the somitic dermomyotome to incorporate exclusively into the developing dorsal aorta. Whereas somite-derived endothelial cells (SDECs) lack hematopoietic potential, they act as local niche to support the emergence of HSPCs from neighboring hemogenic endothelium. Thus, at least three subsets of endothelial cells (ECs) contribute to the developing dorsal aorta: vascular ECs, hemogenic ECs, and SDECs. Taken together, our findings indicate that the distinct spatial origins of endothelial precursors dictate different cellular potentials within the developing dorsal aorta.


Development ◽  
1999 ◽  
Vol 126 (18) ◽  
pp. 4129-4138 ◽  
Author(s):  
N. Funayama ◽  
Y. Sato ◽  
K. Matsumoto ◽  
T. Ogura ◽  
Y. Takahashi

Most triploblastic animals including vertebrates have a coelomic cavity that separates the outer and inner components of the body. The coelom is lined by two different tissue components, somatopleure and splanchnopleure, which are derived from the lateral plate region. Thus, the coelom is constructed as a result of a binary decision during early specification of the lateral plate. In this report we studied the molecular mechanisms of this binary decision. We first demonstrate that the splitting of the lateral plate into the two cell sheets progresses in an anteroposterior order and this progression is not coordinated with that of the somitic segmentation. By a series of embryological manipulations we found that young splanchnic mesoderm is still competent to be respecified as somatic mesoderm, and the ectoderm overlying the lateral plate is sufficient for this redirection. The lateral ectoderm is also required for maintenance of the somatic character of the mesoderm. Thus, the ectoderm plays at least two roles in the early subdivision of the lateral plate: specification and maintenance of the somatic mesoderm. We also show that the latter interactions are mediated by BMP molecules that are localized in the lateral ectoderm. Evolutionary aspects of the coelom formation are also considered.


Development ◽  
1980 ◽  
Vol 56 (1) ◽  
pp. 41-58
Author(s):  
Ruth Bellairs ◽  
P. A. Portch ◽  
E. J. Sanders

Tissue culture, time-lapse cinematographic and electron microscopic techniques have been used to study the properties of chick mesoderm at several stages of differentiation. Lateral plate, unsegmented mesoderm (segmental plate), and newly formed somites were dissected from stage-12 embryos, whilst dermo-myotomes and sclerotomes were dissected from stage-18 embryos. Each type of mesoderm was found to exhibit a characteristic pattern of behaviour. The explants from the unsegmented mesoderm, from the newly formed somites and from the older embryos could be placed in a developmental sequence; with increasing differentiation they settled and spread on the substrate more readily, whether explanted as pieces of tissue or as individual cells, and it was concluded that this implied an increased adhesion to the substrate. Similarly, with increasing differentiation, the cells segmented at a faster rate. No significant differences could be discerned in the internal structure of the different types of cells, although differences in the general shape were apparent. The lateral plate mesoderm cells, which bear some resemblances to the unsegmented mesoderm cells in the embryo, also show some morphological resemblances to them in vitro. However, the lateral plate cells had a much greater success in attaching to glass or plastic substrates. They were also found to have the highest speed of locomotion of all the tissues studied, whereas the unsegmented had the lowest. It is concluded therefore, that although cells may look similar to one another morphologically, their behaviour may differ greatly, probably because they are already partially determined.


Development ◽  
2002 ◽  
Vol 129 (14) ◽  
pp. 3421-3429
Author(s):  
Thomas Schlange ◽  
Hans-Henning Arnold ◽  
Thomas Brand

A model of left-right axis formation in the chick involves inhibition of bone morphogenetic proteins by the antagonist Car as a mechanism of upregulating Nodal in the left lateral plate mesoderm. By contrast, expression of CFC, a competence factor, which is absolutely required for Nodal signaling in the lateral plate mesoderm is dependent on a functional BMP signaling pathway. We have therefore investigated the relationship between BMP and Nodal in further detail. We implanted BMP2 and Noggin-expressing cells into the left lateral plate and paraxial mesoderm and observed a strong upregulation of Nodal and its target genes Pitx2 and Nkx3.2. In addition Cfc, the Nodal type II receptor ActrIIa and Snr were found to depend on BMP signaling for their expression. Comparison of the expression domains of Nodal, Bmp2, Car and Cfc revealed co-expression of Nodal, Cfc and Bmp2, while Car and Nodal only partially overlapped. Ectopic application of BMP2, Nodal, and Car as well as combinations of this signaling molecules to the right lateral plate mesoderm revealed that BMP2 and Car need to synergize in order to specify left identity. We propose a novel model of left-right axis formation, which involves BMP as a positive regulator of Nodal signaling in the chick embryo.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Elizabeth M Sefton ◽  
Bhart-Anjan S Bhullar ◽  
Zahra Mohaddes ◽  
James Hanken

Vertebrate neck musculature spans the transition zone between head and trunk. The extent to which the cucullaris muscle is a cranial muscle allied with the gill levators of anamniotes or is instead a trunk muscle is an ongoing debate. Novel computed tomography datasets reveal broad conservation of the cucullaris in gnathostomes, including coelacanth and caecilian, two sarcopterygians previously thought to lack it. In chicken, lateral plate mesoderm (LPM) adjacent to occipital somites is a recently identified embryonic source of cervical musculature. We fate-map this mesoderm in the axolotl (Ambystoma mexicanum), which retains external gills, and demonstrate its contribution to posterior gill-levator muscles and the cucullaris. Accordingly, LPM adjacent to the occipital somites should be regarded as posterior cranial mesoderm. The axial position of the head-trunk border in axolotl is congruent between LPM and somitic mesoderm, unlike in chicken and possibly other amniotes.


Development ◽  
1997 ◽  
Vol 124 (14) ◽  
pp. 2769-2780 ◽  
Author(s):  
K.M. Downs ◽  
C. Harmann

The murine allantois is the future umbilical component of the placenta. The base of the allantois is also thought to contain the future germ line. We have examined the fate and developmental potency of cells within the murine allantois during gastrulation. lacZ-expressing headfold-stage allantoises (approximately 8.0 days postcoitum; dpc) were subdivided into three proximodistal regions and transplanted into three sites in synchronous non-transgenic host embryos: the primitive streak at the level of prospective paraxial mesoderm, the primitive streak at the level of lateral plate mesoderm, and the base of the allantois. After 23 hours in culture, operated conceptuses were examined histologically for contribution of donor allantoic cells to the conceptus. None of the allantoic regions contributed to paraxial mesoderm when placed into the fetus, but all three colonized the endothelium and adjacent mesenchyme of the dorsal aorta. The mid-region was most efficient at colonizing endothelium, whereas the base was the only allantoic region to exhibit relative pluripotency, colonizing several derivatives of all three primary germ layers. Differences in the state of differentiation along the proximodistal axis of the allantois were further borne out when the three allantoic regions were placed into the base of the allantois of host conceptuses. Striking differences were observed in final position along the proximodistal axis of the host allantois. Most grafted cells translocated distally from the base; however, basal donor allantoic cells translocated typically only as far as the host's mid-region, whereas donor allantoic tip cells typically returned to the tip, often colonizing the chorioallantoic fusion junction. Together, our data reveal that the headfold-stage allantois may contain a proximodistal gradient of differentiation, and raise intriguing questions about how this gradient was established and the role it plays in umbilical vasculogenesis.


2018 ◽  
Author(s):  
Shlomit Edri ◽  
Penny Hayward ◽  
Peter Baillie-Johnson ◽  
Benjamin Steventon ◽  
Alfonso Martinez Arias

AbstractThe Caudal Lateral Epiblast of mammalian embryos harbours bipotent progenitors that contribute to the spinal cord and the paraxial mesoderm in concert with the elongation of the body axis. These progenitors, called Neural Mesodermal Progenitors (NMPs) are identified as cells coexpressing Sox2 and T/Brachyury, a criterion used to derive NMP-like cells from Embryonic Stem Cells in vitro. However, these progenitors do not self renew, as embryonic NMPs do. Here we find that protocols that yield NMP-like cells in vitro first produce a multipotent population that, additional to NMPs, generates progenitors for the lateral plate and intermediate mesoderm. We show that Epiblast Stem Cells (EpiSCs) are an effective source for these multipotent progenitors that are further differentiated by a balance between BMP and Nodal signalling. Importantly, we show that NMP-like cells derived from EpiSCs self renew in vitro and exhibit a gene expression signature similar to that of their embryo counterparts.


Sign in / Sign up

Export Citation Format

Share Document