scholarly journals Disruption of gastrulation and oral-aboral ectoderm differentiation in the Lytechinus pictus embryo by a dominant/negative PDGF receptor

Development ◽  
1997 ◽  
Vol 124 (12) ◽  
pp. 2355-2364 ◽  
Author(s):  
R.K. Ramachandran ◽  
A.H. Wikramanayake ◽  
J.A. Uzman ◽  
V. Govindarajan ◽  
C.R. Tomlinson

Little is known about the cell signaling involved in forming the body plan of the sea urchin embryo. Previous work suggested that PDGF-like and EGF-like receptor-mediated signaling pathways are involved in gastrulation and spiculogenesis in the Lytechinus pictus embryo. Here we show that expression of the human PDGF receptor-beta lacking the cytoplasmic domain disrupted development in a manner consistent with a dominant/negative mechanism. The truncated PDGF receptor-beta inhibited gut and spicule formation and differentiation along the oral-aboral axis. The most severely affected embryos arrested at a developmental stage resembling mesenchyme blastula. Coinjection into eggs of RNA encoding the entire human PDGF receptor-beta rescued development. The truncated PDGF receptor-beta caused the aboral ectoderm-specific genes LpS1 and LpC2 to be repressed while an oral ectoderm-specific gene, Ecto-V, was expressed in all ectoderm cells. The results support the hypothesis that a PDGF-like signaling pathway plays a key role in the intercellular communication required for gastrulation and spiculogenesis, and in cell commitment and differentiation along the oral-aboral axis.

Development ◽  
1995 ◽  
Vol 121 (5) ◽  
pp. 1497-1505 ◽  
Author(s):  
A.H. Wikramanayake ◽  
B.P. Brandhorst ◽  
W.H. Klein

During early embryogenesis, the highly regulative sea urchin embryo relies extensively on cell-cell interactions for cellular specification. Here, the role of cellular interactions in the temporal and spatial expression of markers for oral and aboral ectoderm in Strongylocentrotus purpuratus and Lytechinus pictus was investigated. When pairs of mesomeres or animal caps, which are fated to give rise to ectoderm, were isolated and cultured they developed into ciliated embryoids that were morphologically polarized. In animal explants from S. purpuratus, the aboral ectoderm-specific Spec1 gene was activated at the same time as in control embryos and at relatively high levels. The Spec1 protein was restricted to the squamous epithelial cells in the embryoids suggesting that an oral-aboral axis formed and aboral ectoderm differentiation occurred correctly. However, the Ecto V protein, a marker for oral ectoderm differentiation, was detected throughout the embryoid and no stomodeum or ciliary band formed. These results indicated that animal explants from S. purpuratus were autonomous in their ability to form an oral-aboral axis and to differentiate aboral ectoderm, but other aspects of ectoderm differentiation require interaction with vegetal blastomeres. In contrast to S. purpuratus, aboral ectoderm-specific genes were not expressed in animal explants from L. pictus even though the resulting embryoids were morphologically very similar to those of S. purpuratus. Recombination of the explants with vegetal blastomeres or exposure to the vegetalizing agent LiCl restored activity of aboral ectoderm-specific genes, suggesting the requirement of a vegetal induction for differentiation of aboral ectoderm cells.(ABSTRACT TRUNCATED AT 250 WORDS)


Development ◽  
1997 ◽  
Vol 124 (1) ◽  
pp. 13-20 ◽  
Author(s):  
A.H. Wikramanayake ◽  
W.H. Klein

In the sea urchin embryo, the animal-vegetal axis is established during oogenesis and the oral-aboral axis is specified sometime after fertilization. The mechanisms by which either of these axes are specified and patterned during embryogenesis are poorly understood. Here, we investigated the role of cellular interactions in the specification of the ectoderm territories and polarization of the ectoderm along the oral-aboral axis. Isolated animal halves (mesomeres), which are fated to give rise to oral and aboral ectoderm, developed into polarized embryoids that expressed an oral ectoderm-specific marker uniformly. These embryoids also produced neuron-like cells and serotonergic neurons, suggesting that mesomeres are autonomously specified as oral ectoderm. Mesomere-derived embryoids did not express any aboral ectoderm-specific markers, although we previously showed that aboral ectoderm-specific genes can be induced by 25 mM lithium chloride, which also induced endoderm formation (Wikramanayake, A. H., Brandhorst, B. P. and Klein, W. H.(1995). Development 121, 1497–1505). To ascertain if endoderm formation is a prerequisite for induction of aboral ectoderm by lithium and for normal ectoderm patterning in animal halves, we modulated the lithium treatment to ensure that no endoderm formed. Remarkably, treating animal halves with 10 mM LiCl at approximately 7 hours postfertilization resulted in embryoids that displayed oral-aboral axis patterning in the absence of endoderm. Application of 25 mM LiCl to animal halves at approximately 16 hours postfertilization, which also did not induce endoderm, resulted in polarized expression of the aboral ectoderm-specific LpS1 protein, but global expression of the Ecto V antigen and no induction of the stomodeum or ciliary band. These results suggest that at least two signals, a positive inductive signal to specify the aboral ectoderm and a negative suppressive signal to inactivate oral ectoderm-specific genes in the prospective aboral ectoderm territory, are needed for correct spatial expression of oral and aboral ectoderm-specific genes. Transmission of both these signals may be prerequisite for induction of secondary ectodermal structures such as the ciliary band and stomodeum. Thus, differentiation of ectoderm and polarization of the oral-aboral axis in Lytechinus pictus depends on cellular interactions with vegetal blastomeres as well as interactions along the oral-aboral axis.


Zygote ◽  
2008 ◽  
Vol 16 (1) ◽  
pp. 73-78 ◽  
Author(s):  
M. Alvarez ◽  
J. Nnoli ◽  
E.J. Carroll ◽  
V. Hutchins-Carroll ◽  
Z. Razinia ◽  
...  

SummaryThe 330 kDa fibrillar glycoprotein hyalin is a well known component of the sea urchin embryo extracellular hyaline layer. Only recently, the main component of hyalin, the hyalin repeat domain, has been identified in organisms as widely divergent as bacteria and humans using the GenBank database and therefore its possible function has garnered a great deal of interest. In the sea urchin, hyalin serves as an adhesive substrate in the developing embryo and we have recently shown that exogenously added purified hyalin from Strongylocentrotus purpuratus embryos blocks a model cellular interaction in these embryos, archenteron elongation/attachment to the blastocoel roof. It is important to demonstrate the generality of this result by observing if hyalin from one species of sea urchin blocks archenteron elongation/attachment in another species. Here we show in three repeated experiments, with 30 replicate samples for each condition, that the same concentration of S. purpuratus hyalin (57 μg/ml) that blocked the interaction in living S. purpuratus embryos blocked the same interaction in living Lytechinus pictus embryos. These results correspond with the known crossreactivity of antibody against S. purpuratus hyalin with L. pictus hyalin. We propose that hyalin–hyalin receptor binding may mediate this adhesive interaction. The use of a microplate assay that allows precise quantification of developmental effects should help facilitate identification of the function of hyalin in organisms as divergent as bacteria and humans.


Development ◽  
1998 ◽  
Vol 125 (13) ◽  
pp. 2489-2498 ◽  
Author(s):  
F. Emily-Fenouil ◽  
C. Ghiglione ◽  
G. Lhomond ◽  
T. Lepage ◽  
C. Gache

In the sea urchin embryo, the animal-vegetal axis is defined before fertilization and different embryonic territories are established along this axis by mechanisms which are largely unknown. Significantly, the boundaries of these territories can be shifted by treatment with various reagents including zinc and lithium. We have isolated and characterized a sea urchin homolog of GSK3beta/shaggy, a lithium-sensitive kinase which is a component of the Wnt pathway and known to be involved in axial patterning in other embryos including Xenopus. The effects of overexpressing the normal and mutant forms of GSK3beta derived either from sea urchin or Xenopus were analyzed by observation of the morphology of 48 hour embryos (pluteus stage) and by monitoring spatial expression of the hatching enzyme (HE) gene, a very early gene whose expression is restricted to an animal domain with a sharp border roughly coinciding with the future ectoderm / endoderm boundary. Inactive forms of GSK3beta predicted to have a dominant-negative activity, vegetalized the embryo and decreased the size of the HE expression domain, apparently by shifting the boundary towards the animal pole. These effects are similar to, but even stronger than, those of lithium. Conversely, overexpression of wild-type GSK3beta animalized the embryo and caused the HE domain to enlarge towards the vegetal pole. Unlike zinc treatment, GSK3beta overexpression thus appeared to provoke a true animalization, through extension of the presumptive ectoderm territory. These results indicate that in sea urchin embryos the level of GSKbeta activity controls the position of the boundary between the presumptive ectoderm and endoderm territories and thus, the relative extent of these tissue layers in late embryos. GSK3beta and probably other downstream components of the Wnt pathway thus mediate patterning both along the primary AV axis of the sea urchin embryo and along the dorsal-ventral axis in Xenopus, suggesting a conserved basis for axial patterning between invertebrate and vertebrate in deuterostomes.


2014 ◽  
Vol 111 (10) ◽  
pp. E906-E913 ◽  
Author(s):  
Enhu Li ◽  
Miao Cui ◽  
Isabelle S. Peter ◽  
Eric H. Davidson

By gastrulation the ectodermal territories of the sea urchin embryo have developed an unexpectedly complex spatial pattern of sharply bounded regulatory states, organized orthogonally with respect to the animal/vegetal and oral/aboral axes of the embryo. Although much is known of the gene regulatory network (GRN) linkages that generate these regulatory states, the principles by which the boundaries between them are positioned and maintained have remained undiscovered. Here we determine the encoded genomic logic responsible for the boundaries of the oral aspect of the embryo that separate endoderm from ectoderm and ectoderm from neurogenic apical plate and that delineate the several further subdivisions into which the oral ectoderm per se is partitioned. Comprehensive regulatory state maps, including all spatially expressed oral ectoderm regulatory genes, were established. The circuitry at each boundary deploys specific repressors of regulatory states across the boundary, identified in this work, plus activation by broadly expressed positive regulators. These network linkages are integrated with previously established interactions on the oral/aboral axis to generate a GRN model encompassing the 2D organization of the regulatory state pattern in the pregastrular oral ectoderm of the embryo.


1985 ◽  
Vol 109 (2) ◽  
pp. 418-427 ◽  
Author(s):  
Martin Nemer ◽  
David G. Wilkinson ◽  
Elizabeth C. Travaglini

1995 ◽  
Vol 130 (3) ◽  
pp. 725-731 ◽  
Author(s):  
V Kundra ◽  
B Anand-Apte ◽  
L A Feig ◽  
B R Zetter

The PDGF receptor-beta mediates both mitogenic and chemotactic responses to PDGF-BB. Although the role of Ras in tyrosine kinase-mediated mitogenesis has been characterized extensively, its role in PDGF-stimulated chemotaxis has not been defined. Using cells expressing a dominant-negative ras, we find that Ras inhibition suppresses migration toward PDGF-BB. Overexpression of either Ras-GTPase activating protein (Ras-GAP) or a Ras guanine releasing factor (GRF) also inhibited PDGF-stimulated chemotaxis. In addition, cells producing excess constitutively active Ras failed to migrate toward PDGF-BB, consistent with the observation that either excess ligand or excess signaling intermediate can suppress the chemotactic response. These results suggest that Ras can function in normal cells to support chemotaxis toward PDGF-BB and that either too little or too much Ras activity can abrogate the chemotactic response. In contrast to Ras overexpression, cells producing excess constitutively active Raf, a downstream effector of Ras, did migrate toward PDGF-BB. Cells expressing dominant-negative Ras were able to migrate toward soluble fibronectin demonstrating that these cells retained the ability to migrate. These results suggest that Ras is an intermediate in PDGF-stimulated chemotaxis but may not be required for fibronectin-stimulated cell motility.


Sign in / Sign up

Export Citation Format

Share Document