ras inhibition
Recently Published Documents


TOTAL DOCUMENTS

107
(FIVE YEARS 30)

H-INDEX

19
(FIVE YEARS 4)

2021 ◽  
Vol 50 (1) ◽  
pp. 663-663
Author(s):  
Alexander Flannery ◽  
Adam Kiser ◽  
Michael Behal ◽  
Javier Neyra
Keyword(s):  

2021 ◽  
Vol 22 (18) ◽  
pp. 10139
Author(s):  
Raúl Loera-Valencia ◽  
Francesca Eroli ◽  
Sara Garcia-Ptacek ◽  
Silvia Maioli

The activation of the brain renin-angiotensin system (RAS) plays a pivotal role in the pathophysiology of cognition. While the brain RAS has been studied before in the context of hypertension, little is known about its role and regulation in relation to neuronal function and its modulation. Adequate blood flow to the brain as well as proper clearing of metabolic byproducts become crucial in the presence of neurodegenerative disorders such as Alzheimer’s disease (AD). RAS inhibition (RASi) drugs that can cross into the central nervous system have yielded unclear results in improving cognition in AD patients. Consequently, only one RASi therapy is under consideration in clinical trials to modify AD. Moreover, the role of non-genetic factors such as hypercholesterolemia in the pathophysiology of AD remains largely uncharacterized, even when evidence exists that it can lead to alteration of the RAS and cognition in animal models. Here we revise the evidence for the function of the brain RAS in cognition and AD pathogenesis and summarize the evidence that links it to hypercholesterolemia and other risk factors. We review existent medications for RASi therapy and show research on novel drugs, including small molecules and nanodelivery strategies that can target the brain RAS with potential high specificity. We hope that further research into the brain RAS function and modulation will lead to innovative therapies that can finally improve AD neurodegeneration.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Shannon M. Weber ◽  
Nicole M. Brossier ◽  
Amanda Prechtl ◽  
Stephen Barnes ◽  
Landon S. Wilson ◽  
...  

Abstract Background Loss of the Ras GTPase-activating protein neurofibromin promotes nervous system tumor pathogenesis in patients with neurofibromatosis type 1 (NF1). Neurofibromin loss potentially hyperactivates classic Ras (H-Ras, N-Ras, K-Ras), M-Ras, and R-Ras (R-Ras, R-Ras2/TC21) subfamily proteins. We have shown that classic Ras proteins promote proliferation and survival, but not migration, in malignant peripheral nerve sheath tumor (MPNST) cells. However, it is unclear whether R-Ras, R-Ras2 and M-Ras are expressed and hyperactivated in MPNSTs and, if so, whether they contribute to MPNST pathogenesis. We assessed the expression and activation of these proteins in MPNST cells and inhibited them to determine the effect this had on proliferation, migration, invasion, survival and the phosphoproteome. Methods NF1-associated (ST88-14, 90-8, NMS2, NMS-PC, S462, T265-2c) and sporadic (STS-26T, YST-1) MPNST lines were used. Cells were transfected with doxycycline-inducible vectors expressing either a pan-inhibitor of the R-Ras subfamily [dominant negative (DN) R-Ras] or enhanced green fluorescent protein (eGFP). Methodologies used included immunoblotting, immunocytochemistry, PCR, Transwell migration, 3H-thymidine incorporation, calcein cleavage assays and shRNA knockdowns. Proteins in cells with or without DN R-Ras expression were differentially labeled with SILAC and mass spectrometry was used to identify phosphoproteins and determine their relative quantities in the presence and absence of DN R-Ras. Validation of R-Ras and R-Ras2 action and R-Ras regulated networks was performed using genetic and/or pharmacologic approaches. Results R-Ras2 was uniformly expressed in MPNST cells, with R-Ras present in a major subset. Both proteins were activated in neurofibromin-null MPNST cells. Consistent with classical Ras inhibition, DN R-Ras and R-Ras2 knockdown inhibited proliferation. However, DN R-Ras inhibition impaired migration and invasion but not survival. Mass spectrometry-based phosphoproteomics identified thirteen protein networks distinctly regulated by DN R-Ras, including multiple networks regulating cellular movement and morphology. ROCK1 was a prominent mediator in these networks. DN R-Ras expression and RRAS and RRAS2 knockdown inhibited migration and ROCK1 phosphorylation; ROCK1 inhibition similarly impaired migration and invasion, altered cellular morphology and triggered the accumulation of large intracellular vesicles. Conclusions R-Ras proteins function distinctly from classic Ras proteins by regulating distinct signaling pathways that promote MPNST tumorigenesis by mediating migration and invasion. Plain English Summary Mutations of the NF1 gene potentially results in the activation of multiple Ras proteins, which are key regulators of many biologic effects. The protein encoded by the NF1 gene, neurofibromin, acts as an inhibitor of both classic Ras and R-Ras proteins; loss of neurofibromin could cause these Ras proteins to become persistently active, leading to the development of cancer. We have previously shown that three related Ras proteins (the classic Ras proteins) are highly activated in malignant peripheral nerve sheath tumor (MPNST) cells with neurofibromin loss and that they drive cancer cell proliferation and survival by activating multiple cellular signaling pathways. Here, we examined the expression, activation and action of R-Ras proteins in MPNST cells that have lost neurofibromin. Both R-Ras and R-Ras2 are expressed in MPNST cells and activated. Inhibition of R-Ras action inhibited proliferation, migration and invasion but not survival. We examined the activation of cytoplasmic signaling pathways in the presence and absence of R-Ras signaling and found that R-Ras proteins regulated 13 signaling pathways distinct from those regulated by classic Ras proteins. Closer study of an R-Ras regulated pathway containing the signaling protein ROCK1 showed that inhibition of either R-Ras, R-Ras2 or ROCK1 similarly impaired cellular migration and invasion and altered cellular morphology. Inhibition of R-Ras/R-Ras2 and ROCK1 signaling also triggered the accumulation of abnormal intracellular vesicles, indicating that these signaling molecules regulate the movement of proteins and other molecules in the cellular interior.


2021 ◽  
Vol 16 (7) ◽  
pp. 1002-1004
Author(s):  
Fitra Rianto ◽  
Matthew A. Sparks
Keyword(s):  

2021 ◽  
Author(s):  
Jeiran Pashapour-Anousheh ◽  
Abolfazl Barzegar ◽  
Mohammad Saeid Hejazi ◽  
Nikoo Hasheminejad ◽  
Hamid Reza Heidari ◽  
...  

Ras proteins are considered as one of the most critical cancer initiators. Mutations of this protein family lead to the continuous activation of the proliferation pathways. Therefore, many efforts have been taken to design the anti-mutant Ras drug candidates. Regardless of the development of promising inhibitors of Ras G12C mutant in a specific cancer type, there is no approved inhibitor of Ras mutants in the clinic. One of the significant limitations is to inhibit particular mutants and not to affect the wild-type Ras variants. Here we present a review on the mechanism of action of the Ras proteins to get a better insight into the strategies utilized to inhibit Ras-mutated cancers. The direct Ras inhibition strategies are then highlighted to obtain a better perspective of possible promising approaches to target Ras proteins in cancer therapy.


Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 553
Author(s):  
Aoife A. Nolan ◽  
Nourhan K. Aboud ◽  
Walter Kolch ◽  
David Matallanas

Oncogenic RAS (Rat sarcoma) mutations drive more than half of human cancers, and RAS inhibition is the holy grail of oncology. Thirty years of relentless efforts and harsh disappointments have taught us about the intricacies of oncogenic RAS signalling that allow us to now get a pharmacological grip on this elusive protein. The inhibition of effector pathways, such as the RAF-MEK-ERK pathway, has largely proven disappointing. Thus far, most of these efforts were aimed at blocking the activation of ERK. Here, we discuss RAF-dependent pathways that are regulated through RAF functions independent of catalytic activity and their potential role as targets to block oncogenic RAS signalling. We focus on the now well documented roles of RAF kinase-independent functions in apoptosis, cell cycle progression and cell migration.


Sign in / Sign up

Export Citation Format

Share Document