The role of lin-22, a hairy/enhancer of split homolog, in patterning the peripheral nervous system of C. elegans

Development ◽  
1997 ◽  
Vol 124 (15) ◽  
pp. 2875-2888 ◽  
Author(s):  
L.A. Wrischnik ◽  
C.J. Kenyon

In C. elegans, six lateral epidermal stem cells, the seam cells V1-V6, are located in a row along the anterior-posterior (A/P) body axis. Anterior seam cells (V1-V4) undergo a fairly simple sequence of stem cell divisions and generate only epidermal cells. Posterior seam cells (V5 and V6) undergo a more complicated sequence of cell divisions that include additional rounds of stem cell proliferation and the production of neural as well as epidermal cells. In the wild type, activity of the gene lin-22 allows V1-V4 to generate their normal epidermal lineages rather than V5-like lineages. lin-22 activity is also required to prevent additional neurons from being produced by one branch of the V5 lineage. We find that the lin-22 gene exhibits homology to the Drosophila gene hairy, and that lin-22 activity represses neural development within the V5 lineage by blocking expression of the posterior-specific Hox gene mab-5 in specific cells. In addition, in order to prevent anterior V cells from generating V5-like lineages, wild-type lin-22 gene activity must inhibit (directly or indirectly) at least five downstream regulatory gene activities. In anterior body regions, lin-22(+) inhibits expression of the Hox gene mab-5. It also inhibits the activity of the achaete-scute homolog lin-32 and an unidentified gene that we postulate regulates stem cell division. Each of these three genes is required for the expression of a different piece of the ectopic V5-like lineages generated in lin-22 mutants. In addition, lin-22 activity prevents two other Hox genes, lin-39 and egl-5, from acquiring new activities within their normal domains of function along the A/P body axis. Some, but not all, of the patterning activities of lin-22 in C. elegans resemble those of hairy in Drosophila.

2008 ◽  
Vol 27 (12) ◽  
pp. 1647-1657 ◽  
Author(s):  
Takahiro Kanamori ◽  
Takao Inoue ◽  
Taro Sakamoto ◽  
Keiko Gengyo-Ando ◽  
Masafumi Tsujimoto ◽  
...  

2021 ◽  
Vol 2 ◽  
Author(s):  
Lisa Van den Broeck ◽  
Ryan J. Spurney ◽  
Adam P. Fisher ◽  
Michael Schwartz ◽  
Natalie M. Clark ◽  
...  

Abstract Stem cells give rise to the entirety of cells within an organ. Maintaining stem cell identity and coordinately regulating stem cell divisions is crucial for proper development. In plants, mobile proteins, such as WUSCHEL-RELATED HOMEOBOX 5 (WOX5) and SHORTROOT (SHR), regulate divisions in the root stem cell niche. However, how these proteins coordinately function to establish systemic behaviour is not well understood. We propose a non-cell autonomous role for WOX5 in the cortex endodermis initial (CEI) and identify a regulator, ANGUSTIFOLIA (AN3)/GRF-INTERACTING FACTOR 1, that coordinates CEI divisions. Here, we show with a multi-scale hybrid model integrating ordinary differential equations (ODEs) and agent-based modeling that quiescent center (QC) and CEI divisions have different dynamics. Specifically, by combining continuous models to describe regulatory networks and agent-based rules, we model systemic behaviour, which led us to predict cell-type-specific expression dynamics of SHR, SCARECROW, WOX5, AN3 and CYCLIND6;1, and experimentally validate CEI cell divisions. Conclusively, our results show an interdependency between CEI and QC divisions.


PLoS ONE ◽  
2013 ◽  
Vol 8 (10) ◽  
pp. e76195 ◽  
Author(s):  
Leili Shahriyari ◽  
Natalia L. Komarova

Development ◽  
2001 ◽  
Vol 128 (4) ◽  
pp. 581-590 ◽  
Author(s):  
M. Herman

In Caenorhabditis elegans, Wnt signaling pathways are important in controlling cell polarity and cell migrations. In the embryo, a novel Wnt pathway functions through a (beta)-catenin homolog, WRM-1, to downregulate the levels of POP-1/Tcf in the posterior daughter of the EMS blastomere. The level of POP-1 is also lower in the posterior daughters of many anteroposterior asymmetric cell divisions during development. I have found that this is the case for of a pair of postembryonic blast cells in the tail. In wild-type animals, the level of POP-1 is lower in the posterior daughters of the two T cells, TL and TR. Furthermore, in lin-44/Wnt mutants, in which the polarities of the T cell divisions are frequently reversed, the level of POP-1 is frequently lower in the anterior daughters of the T cells. I have used a novel RNA-mediated interference technique to interfere specifically with pop-1 zygotic function and have determined that pop-1 is required for wild-type T cell polarity. Surprisingly, none of the three C. elegans (beta)-catenin homologs appeared to function with POP-1 to control T cell polarity. Wnt signaling by EGL-20/Wnt controls the migration of the descendants of the QL neuroblast by regulating the expression the Hox gene mab-5. Interfering with pop-1 zygotic function caused defects in the migration of the QL descendants that mimicked the defects in egl-20/Wnt mutants and blocked the expression of mab-5. This suggests that POP-1 functions in the canonical Wnt pathway to control QL descendant migration and in novel Wnt pathways to control EMS and T cell polarities.


Cell Systems ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 640-652.e5 ◽  
Author(s):  
Fumio Arai ◽  
Patrick S. Stumpf ◽  
Yoshiko M. Ikushima ◽  
Kentaro Hosokawa ◽  
Aline Roch ◽  
...  

mBio ◽  
2018 ◽  
Vol 9 (4) ◽  
Author(s):  
David Fast ◽  
Aashna Duggal ◽  
Edan Foley

ABSTRACTAdultDrosophila melanogasterraised in the absence of symbiotic bacteria have fewer intestinal stem cell divisions and a longer life span than their conventionally reared counterparts. However, we do not know if increased stem cell divisions are essential for symbiont-dependent regulation of longevity. To determine if individual symbionts cause aging-dependent death inDrosophila, we examined the impacts of common symbionts on host longevity. We found that monoassociation of adultDrosophilawithLactobacillus plantarum, a widely reported fly symbiont and member of the probioticLactobacillusgenus, curtails adult longevity relative to germfree counterparts. The effects ofLactobacillus plantarumon life span were independent of intestinal aging. Instead, we found that association withLactobacillus plantarumcauses an extensive intestinal pathology within the host, characterized by loss of stem cells, impaired epithelial renewal, and a gradual erosion of epithelial ultrastructure. Our study uncovers an unknown aspect ofLactobacillus plantarum-Drosophilainteractions and establishes a simple model to characterize symbiont-dependent disruption of intestinal homeostasis.IMPORTANCEUnder homeostatic conditions, gut bacteria provide molecular signals that support the organization and function of the host intestine. Sudden shifts in the composition or distribution of gut bacterial communities impact host receipt of bacterial cues and disrupt tightly regulated homeostatic networks. We used theDrosophila melanogastermodel to determine the effects of prominent fly symbionts on host longevity and intestinal homeostasis. We found that monoassociation withLactobacillus plantarumleads to a loss of intestinal progenitor cells, impaired epithelial renewal, and disruption of gut architecture as flies age. These observations uncover a novel phenotype caused by monoassociation of a germfree host with a common symbiont and establish a simple model to characterize symbiont-dependent loss of intestinal homeostasis.


Sign in / Sign up

Export Citation Format

Share Document