canonical wnt pathway
Recently Published Documents


TOTAL DOCUMENTS

182
(FIVE YEARS 29)

H-INDEX

38
(FIVE YEARS 2)

Author(s):  
Jingye Zuo ◽  
Yajie Tong ◽  
Yuting Yang ◽  
Yirui Wang ◽  
Dongmei Yue

Background: Bronchopulmonary dysplasia (BPD) is characterized by impaired alveolar and microvascular development. Claudin-18 is the only known lung-specific tight junction protein affecting alveolar epithelium development and transdifferentiation. Objective: To explore the changes in claudin-18 expression, alveolar epithelial cell (AEC) marker proteins, the canonical Wnt pathway, and their possible regulatory relationships in a hyperoxia-induced BPD rat model. Methods: The BPD neonatal rat model was established by exposure to hyperoxia (85%). Hematoxylin and eosin (HE) staining was used to confirm the establishment of the BPD model. The mRNA levels were assessed using quantitative real-time polymerase chain reaction, while protein expression levels were determined using western blotting, immunohistochemical staining, and immunofluorescence . Results: As confirmed by HE staining, the BPD neonatal rat model was successfully established. Compared with the air group, claudin-18 and claudin-4 expression decreased in the hyperoxia group. The expression of β-catenin of the Wnt signaling decreased, whereas that of p-GSK-3β increased. Expression of the AEC Ⅱ marker SFTPC decreased initially and then increased, whereas that of the AEC Ⅰ marker Podoplanin increased on day 14 (P < 0.05). Conclusions: Claudin-18 downregulation during hyperoxia may affect lung development and maturation, which may result in hyperoxia-induced BPD. Additionally, claudin-18 is associated with the canonical Wnt pathway and alveolar epithelial transdifferentiation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Maria Sirakov ◽  
Leo Claret ◽  
Michelina Plateroti

A pivotal role of thyroid hormones and their nuclear receptors in intestinal development and homeostasis have been described, whereas their involvement in intestinal carcinogenesis is still controversial. In this perspective article we briefly summarize the recent advances in this field and present new data regarding their functional interaction with one of the most important signaling pathway, such as WNT, regulating intestinal development and carcinogenesis. These complex interactions unveil new concepts and will surely be of importance for translational research.


Author(s):  
Sankari Dantu Sai Shyama Lakshmi ◽  
Maka Sai Sailaja ◽  
Dalal Swetha ◽  
Chanda Chandrasekhar ◽  
Aluru Ranganadha Reddy

Canonical Wnt pathway or β catenin dependent pathway is one of the highly conserved signalling pathway which can control gene expression and regulate cell proliferation, cell adhesion, cell migration, cell polarity and organogenesis. Abnormal regulation of β catenin in the canonical wnt signalling pathway leads to transcription of several genes involved in oncogenic programs. Aberrant signalling of the canonical wnt pathway was observed in several types of cancers including hepatocarcinoma, colorectal cancer and lung cancer. Many small molecules were observed to have the potential to block the aberrant wnt signalling pathway by allosteric binding and inhibiting β catenin molecule. The current study involves screening for ligands which can have strong allosteric binds to β catenin and inhibit wnt signalling pathway. Molecular docking studies were used to evaluate the binding capacity of the selected ligands. Curcumin, Cardamonin, FH535 and ICRT-3 were used as ligands for the molecular docking study with β catenin binding Transcription factor -4 receptor. All chosen ligands have exhibited significant binding energies with the receptor. The highest -9.518272 kcal/mol with Cardamonin followed by -9.28359 kcal/mol with FH535, -8.422604 kcal/mol with curcumin and the least -8.407231 kcal/mol with ICRT-3. All the ligands showed at least 1 hydrogen bond with the target receptor whereas Cardamonin showed 3 hydrogen bonds. Curcumin is a close second forming 2 hydrogen bonds while FH535 and ICRT-3 form only 1 hydrogen bond. The 2D interactions of the ligand and the molecule are visualised by using chimera. We observed Cardamonin to have a very strong binding affinity with the target receptor. Cardamonin can be a suitable drug candidate and might have the potential to inhibit the β catenin dependent wnt signalling pathway.


2021 ◽  
Vol 563 ◽  
pp. 31-39
Author(s):  
Ji Yeon Hong ◽  
Jessica Zapata ◽  
Alexandria Blackburn ◽  
Ryan Baumert ◽  
Seung Min Bae ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Di Deng ◽  
Xiaoqing Qian ◽  
Binjun Chen ◽  
Xiaoyu Yang ◽  
Yanmei Wang ◽  
...  

As part of the inner ear, the vestibular system is responsible for sense of balance, which consists of three semicircular canals, the utricle, and the saccule. Increasing evidence has indicated that the noncanonical Wnt/PCP signaling pathway plays a significant role in the development of the polarity of the inner ear. However, the role of canonical Wnt signaling in the polarity of the vestibule is still not completely clear. In this study, we found that canonical Wnt pathway-related genes are expressed in the early stage of development of the utricle and change dynamically. We conditionally knocked out β-catenin, a canonical Wnt signaling core protein, and found that the cilia orientation of hair cells was disordered with reduced number of hair cells in the utricle. Moreover, regulating the canonical Wnt pathway (Licl and IWP2) in vitro also affected hair cell polarity and indicated that Axin2 may be important in this process. In conclusion, our results not only confirm that the regulation of canonical Wnt signaling affects the number of hair cells in the utricle but also provide evidence for its role in polarity development.


Bone ◽  
2021 ◽  
pp. 116001
Author(s):  
Kazumi Kawata ◽  
Keishi Narita ◽  
Ayako Washio ◽  
Chiaki Kitamura ◽  
Tatsuji Nishihara ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Paolo Grazioli ◽  
Chiara Parodi ◽  
Milena Mariani ◽  
Daniele Bottai ◽  
Elisabetta Di Fede ◽  
...  

AbstractCornelia de Lange Syndrome (CdLS) is a rare developmental disorder affecting a multitude of organs including the central nervous system, inducing a variable neurodevelopmental delay. CdLS malformations derive from the deregulation of developmental pathways, inclusive of the canonical WNT pathway. We have evaluated MRI anomalies and behavioral and neurological clinical manifestations in CdLS patients. Importantly, we observed in our cohort a significant association between behavioral disturbance and structural abnormalities in brain structures of hindbrain embryonic origin. Considering the cumulative evidence on the cohesin-WNT-hindbrain shaping cascade, we have explored possible ameliorative effects of chemical activation of the canonical WNT pathway with lithium chloride in different models: (I) Drosophila melanogaster CdLS model showing a significant rescue of mushroom bodies morphology in the adult flies; (II) mouse neural stem cells restoring physiological levels in proliferation rate and differentiation capabilities toward the neuronal lineage; (III) lymphoblastoid cell lines from CdLS patients and healthy donors restoring cellular proliferation rate and inducing the expression of CyclinD1. This work supports a role for WNT-pathway regulation of CdLS brain and behavioral abnormalities and a consistent phenotype rescue by lithium in experimental models.


2021 ◽  
Author(s):  
Kaj Kamstra ◽  
Mohammed Z. Rizwan ◽  
Julia A. Horsfield ◽  
Dominik Pretz ◽  
Peter R. Shepherd ◽  
...  

SummaryLeptin is a body weight regulatory hormone, but it is arguably even more potent at regulating blood glucose levels. To further our understanding of the molecular mechanisms by which leptin controls glucose homeostasis, we have used transgenic zebrafish models and conditional deletion of beta catenin in the mediobasal hypothalamus of adult mice to show that Wnt signalling in the brain mediates glucoregulatory effects of leptin. In zebrafish, under normal feeding conditions, leptin regulates glucose homeostasis but not adipostasis. In times of nutrient excess, we found that leptin also regulates body weight and size in this species. Using a Wnt signalling reporter fish, we show that leptin directly activates the canonical Wnt pathway in vivo. Pharmacological inhibition of this pathway prevented the leptin-induced improvement in glucose tolerance. In adult mice, conditional deletion of the key Wnt effector molecule, β-catenin, in the mediobasal hypothalamus of male mice confirmed the essential role of the Wnt pathway in mediating leptin action and the neuroendocrine regulation of glucose homeostasis. Adult-onset β-catenin deletion in the mediobasal hypothalamus led to glucose intolerance, exacerbation of caloric intake and body weight gain under high fat diet, as well as resistance to exogenous leptin.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Qiuyu Guo ◽  
Albert D Kim ◽  
Bin Li ◽  
Andrew Ransick ◽  
Helena Bugacov ◽  
...  

The canonical Wnt pathway transcriptional co-activator β-catenin regulates self-renewal and differentiation of mammalian nephron progenitor cells (NPCs). We modulated β-catenin levels in NPC cultures using the GSK3 inhibitor CHIR9902 (CHIR) to examine opposing developmental actions of β-catenin. Low CHIR-mediated maintenance and expansion of NPCs is independent of direct engagement of TCF/LEF/β-catenin transcriptional complexes at low CHIR-dependent cell-cycle targets. In contrast, in high CHIR, TCF7/LEF1/β-catenin complexes replaced TCF7L1/TCF7L2 binding on enhancers of differentiation-promoting target genes. Chromosome confirmation studies showed pre-established promoter-enhancer connections to these target genes in NPCs. High CHIR-associated de novo looping was observed in positive transcriptional feedback regulation to the canonical Wnt pathway. Thus, β-catenin's direct transcriptional role is restricted to the induction of NPCs where rising β-catenin levels switch inhibitory TCF7L1/TCF7L2 complexes to activating LEF1/TCF7 complexes at primed gene targets poised for rapid initiation of a nephrogenic program.


Author(s):  
Liming Gou ◽  
Xiaochun Ren ◽  
Ping Ji

Background: Branching morphogenesis is a crucial developmental mechanism for the formation of a typical bush-like structure of the submandibular gland (SMG). However, the detailed mechanism underlying this process remains to be fully understood. Here, we investigate whether a cross-talking may exist between Wnt/beta-catenin signaling pathway and lama5 during the branching process in SMG development. Methods: Embryonic mouse SMG organ culture model was established, and the validity of this model was confirmed. The roles of Wnt/beta-catenin signaling pathway, FGF signaling, and Lama5 in the branching process were investigated by morphogenesis assays. And the interactions between these signaling were also investigated and demonstrated by morphogenesis assays and gene expression patterns. Results: We demonstrated that E12 or E13 SMG organ culture model can be used as an ideal approach to study the process of branching morphogenesis. And branching morphogenesis assay revealed that the epithelial branching process would be promoted when the canonical Wnt pathway was inhibited and be significantly suppressed when wnt pathway is over activated. Further experiments indicated that FGF signaling acts most likely acts upstream as a negative regulator of the canonical Wnt pathway during the branching process, whose effect could be partially reversed by Wnt3a. And we further demonstrated that Wnt/beta-catenin signaling regulates the branching morphogenesis through Lama5. Conclusion: Our present work demonstrated that Wnt/beta-catenin signaling pathway acting downstream of FGF signaling may serve as a negative regulatory mechanism in the process of SMG branching morphogenesis through Lama5.


Sign in / Sign up

Export Citation Format

Share Document