Control of cell fates and segmentation in the Drosophila mesoderm

Development ◽  
1997 ◽  
Vol 124 (15) ◽  
pp. 2915-2922 ◽  
Author(s):  
V. Riechmann ◽  
U. Irion ◽  
R. Wilson ◽  
R. Grosskortenhaus ◽  
M. Leptin

The primordia for heart, fat body, and visceral and somatic muscles arise in specific areas of each segment in the Drosophila mesoderm. We show that the primordium of the somatic muscles, which expresses high levels of twist, a crucial factor of somatic muscle determination, is lost in sloppy-paired mutants. Simultaneously, the primordium of the visceral muscles is expanded. The visceral muscle and fat body primordia require even-skipped for their development and the mesoderm is thought to be unsegmented in even-skipped mutants. However, we find that even-skipped mutants retain the segmental modulation of the expression of twist. Both the domain of even-skipped function and the level of twist expression are regulated by sloppy-paired. sloppy-paired thus controls segmental allocation of mesodermal cells to different fates.

Development ◽  
1998 ◽  
Vol 125 (4) ◽  
pp. 713-723 ◽  
Author(s):  
V. Riechmann ◽  
K.P. Rehorn ◽  
R. Reuter ◽  
M. Leptin

The somatic muscles, the heart, the fat body, the somatic part of the gonad and most of the visceral muscles are derived from a series of segmentally repeated primordia in the Drosophila mesoderm. This work describes the early development of the fat body and its relationship to the gonadal mesoderm, as well as the genetic control of the development of these tissues. Segmentation and dorsoventral patterning genes define three regions in each parasegment in which fat body precursors can develop. Fat body progenitors in these regions are specified by different genetic pathways. Two regions require engrailed and hedgehog for their development while the third is controlled by wingless. decapentaplegic and one or more unknown genes determine the dorsoventral extent of these regions. In each of parasegments 10–12 one of these regions generates somatic gonadal precursors instead of fat body. The balance between fat body and somatic gonadal fate in these serially homologous cell clusters is controlled by at least five genes. We suggest a model in which tinman, engrailed and wingless are necessary to permit somatic gonadal develoment, while serpent counteracts the effects of these genes and promotes fat body development. The homeotic gene abdominalA limits the region of serpent activity by interfering in a mutually repressive feed back loop between gonadal and fat body development.


Development ◽  
2001 ◽  
Vol 128 (17) ◽  
pp. 3331-3338 ◽  
Author(s):  
Beatriz San Martin ◽  
Mar Ruiz-Gómez ◽  
Matthias Landgraf ◽  
Michael Bate

The embryonic Drosophila midgut is enclosed by a latticework of longitudinal and circular visceral muscles. We find that these muscles are syncytial. Like the somatic muscles they are generated by the prior segregation of two populations of cells: fusion-competent myoblasts and founder myoblasts specialised to seed the formation of particular muscles. Visceral muscle founders are of two classes: those that seed circular muscles and those that seed longitudinal muscles. These specialisations are revealed in mutant embryos where myoblast fusion fails. In the absence of fusion, founders make mononucleate circular or longitudinal fibres, while their fusion-competent neighbours remain undifferentiated.


Development ◽  
1993 ◽  
Vol 118 (3) ◽  
pp. 719-729 ◽  
Author(s):  
R. Bodmer

The homeobox-containing gene tinman (msh-2, Bodmer et al., 1990 Development 110, 661–669) is expressed in the mesoderm primordium, and this expression requires the function of the mesoderm determinant twist. Later in development, as the first mesodermal subdivisions are occurring, expression becomes limited to the visceral mesoderm and the heart. Here, I show that the function of tinman is required for visceral muscle and heart development. Embryos that are mutant for the tinman gene lack the appearance of visceral mesoderm and of heart primordia, and the fusion of the anterior and posterior endoderm is impaired. Even though tinman mutant embryos do not have a heart or visceral muscles, many of the somatic body wall muscles appear to develop although abnormally. When the tinman cDNA is ubiquitously expressed in tinman mutant embryos, via a heatshock promoter, formation of heart cells and visceral mesoderm is partially restored, tinman seems to be one of the earliest genes required for heart development and the first gene reported for which a crucial function in the early mesodermal subdivisions has been implicated.


Development ◽  
1999 ◽  
Vol 126 (20) ◽  
pp. 4525-4535 ◽  
Author(s):  
S. Knirr ◽  
N. Azpiazu ◽  
M. Frasch

In the Drosophila embryo, a distinct class of myoblasts, designated as muscle founders, prefigures the mature pattern of somatic body wall muscles. Each founder cell appears to be instrumental in generating a single larval muscle with a defined identity. The NK homeobox gene S59 was the first of a growing number of proposed ‘identity genes’ that have been found to be expressed in stereotyped patterns in specific subsets of muscle founders and their progenitor cells and are thought to control their developmental fates. In the present study, we describe the effects of gain- and loss-of-function experiments with S59. We find that a null mutation in the gene encoding S59, which we have named slouch (slou), disrupts the development of all muscles that are derived from S59-expressing founder cells. The observed phenotypes upon mutation and ectopic expression of slouch include transformations of founder cell fates, thus confirming that slouch (S59) functions as an identity gene in muscle development. These fate transformations occur between sibling founder cells as well as between neighboring founders that are not lineage-related. In the latter case, we show that slouch (S59) activity is required cell-autonomously to repress the expression of ladybird (lb) homeobox genes, thereby preventing specification along the lb pathway. Together, these findings provide new insights into the regulatory interactions that establish the somatic muscle pattern.


Development ◽  
1986 ◽  
Vol 91 (1) ◽  
pp. 251-266
Author(s):  
Peter A. Lawrence ◽  
Paul Johnston

Adult Drosophila mosaics can be used to study cell lineage and to map relative positions of primordia at the blastoderm stage. This information can define which germ layer an organ comes from and can help build models of genetic regulation of development. Here we use the sdh cell marker to map internal organs in mosaics made by nuclear transplantation. We confirm that oenocytes arise from the same progenitors as the adult epidermis, but that muscles and fat body have a separate (mesodermal) origin and that the precursors of epidermis and central neurones are closely intermingled in the ventral, but not dorsal, epidermis. We find that the malpighian tubules are more closely related to the hindgut than the midgut and are therefore ectodermal in origin. We find that each intersegmental muscle in the thorax arises from one specific parasegment in the embryo, but that very small numbers of myoblasts wander and contribute to muscles of inappropriate segments. We present evidence indicating that the visceral muscles of the midgut have a widely dispersed origin (over much of the embryo) while the somatic mesoderm of the female gonad comes from a small number of abdominal segments. The visceral mesoderm of the hindgut develops from a localized posterior region of the embryo.


Development ◽  
1998 ◽  
Vol 125 (8) ◽  
pp. 1361-1369 ◽  
Author(s):  
S. Anant ◽  
S. Roy ◽  
K. Vijay Raghavan

Twist is required in Drosophila embryogenesis for mesodermal specification and cell-fate choice. We have examined the role of Twist and Notch during adult indirect flight muscle development. Reduction in levels of Twist leads to abnormal myogenesis. Notch reduction causes a similar mutant phenotype and reduces Twist levels. Conversely, persistent expression, in myoblasts, of activated Notch causes continued twist expression and failure of differentiation as assayed by myosin expression. The gain-of-function phenotype of Notch is very similar to that seen upon persistent twist expression. These results point to a relationship between Notch function and twist regulation during indirect flight muscle development and show that decline in Twist levels is a requirement for the differentiation of these muscles, unlike the somatic muscles of the embryo.


Genetics ◽  
2019 ◽  
Vol 213 (4) ◽  
pp. 1447-1464 ◽  
Author(s):  
Lindsay Moss-Taylor ◽  
Ambuj Upadhyay ◽  
Xueyang Pan ◽  
Myung-Jun Kim ◽  
Michael B. O’Connor

Correct scaling of body and organ size is crucial for proper development, and the survival of all organisms. Perturbations in circulating hormones, including insulins and steroids, are largely responsible for changing body size in response to both genetic and environmental factors. Such perturbations typically produce adults whose organs and appendages scale proportionately with final size. The identity of additional factors that might contribute to scaling of organs and appendages with body size is unknown. Here, we report that loss-of-function mutations in DrosophilaActivinβ (Actβ), a member of the TGF-β superfamily, lead to the production of small larvae/pupae and undersized rare adult escapers. Morphometric measurements of escaper adult appendage size (wings and legs), as well as heads, thoraxes, and abdomens, reveal a disproportional reduction in abdominal size compared to other tissues. Similar size measurements of selected Actβ mutant larval tissues demonstrate that somatic muscle size is disproportionately smaller when compared to the fat body, salivary glands, prothoracic glands, imaginal discs, and brain. We also show that Actβ control of body size is dependent on canonical signaling through the transcription-factor dSmad2 and that it modulates the growth rate, but not feeding behavior, during the third-instar period. Tissue- and cell-specific knockdown, and overexpression studies, reveal that motoneuron-derived Actβ is essential for regulating proper body size and tissue scaling. These studies suggest that, unlike in vertebrates, where Myostatin and certain other Activin-like factors act as systemic negative regulators of muscle mass, in Drosophila, Actβ is a positive regulator of muscle mass that is directly delivered to muscles by motoneurons. We discuss the importance of these findings in coordinating proportional scaling of insect muscle mass to appendage size.


2007 ◽  
Vol 179 (2) ◽  
pp. 219-227 ◽  
Author(s):  
Hanh T. Nguyen ◽  
Francesca Voza ◽  
Nader Ezzeddine ◽  
Manfred Frasch

We report that the Drosophila mind bomb2 (mib2) gene is a novel regulator of muscle development. Unlike its paralogue, mib1, zygotic expression of mib2 is restricted to somatic and visceral muscle progenitors, and their respective differentiated musculatures. We demonstrate that in embryos that lack functional Mib2, muscle detachment is observed beginning in mid stage 15 and progresses rapidly, culminating in catastrophic degeneration and loss of most somatic muscles by stage 17. Notably, the degenerating muscles are positive for apoptosis markers, and inhibition of apoptosis in muscles prevents to a significant degree the muscle defects. Rescue experiments with Mib1 and Neuralized show further that these E3 ubiquitin ligases are not capable of ameliorating the muscle mutant phenotype of mib2. Our data suggest strongly that mib2 is involved in a novel Notch- and integrin-independent pathway that maintains the integrity of fully differentiated muscles and prevents their apoptotic degeneration.


2021 ◽  
Author(s):  
Preethi Poovathumkadavil ◽  
Jean-Philippe Da Ponte ◽  
Krzysztof Jagla

The somatic muscles of the Drosophila embryo and larvae share structural and functional similarities with vertebrate skeletal muscles and serve as a powerful model for studying muscle development. Here we show that the evolutionarily conserved Ssdp protein is required for the correct patterning of somatic muscles. Ssdp is part of the conserved Chi/LDB-Ssdp (ChiLS) complex that is a core component of the conserved Wg/Wnt enhanceosome, which responds to Wg signals to regulate gene transcription. Ssdp shows isoform specific expression in developing somatic muscles and its loss of function leads to an aberrant somatic muscle pattern due to a deregulated muscle identity program. Ssdp mutant embryos fail to maintain adequate expression levels of muscle identity transcription factors and this results in aberrant muscle morphology, innervation, attachment and fusion. We also show that the epidermal expression of Wg is downregulated in Ssdp mutants and that Ssdp interacts with Wg to regulate the properties of a subset of ventral muscles. Thus, our data unveil the dual contribution of Ssdp to muscle diversification by regulating the expression of muscle-intrinsic identity genes and by interacting with the extrinsic factor, Wg. The knowledge gained here about Ssdp and its interaction with Wg could be relevant to vertebrate muscle development.


Development ◽  
1995 ◽  
Vol 121 (12) ◽  
pp. 4183-4193 ◽  
Author(s):  
O.M. Borkowski ◽  
N.H. Brown ◽  
M. Bate

We have used a novel cell marker, in which the twist promoter directs the synthesis of the cell surface protein CD2 (twi-CD2) to examine the development of the mesoderm in the Drosophila embryo after gastrulation and to locate the progenitor cell populations for different mesodermal derivatives. We find that the early mesoderm in each segment is divided into a more anterior region with relatively low levels of twist and twi-CD2 expression and a more posterior region where twist and twi-CD2 expression are high. This subdivision coincides with regional assignments of cells to form different progenitors: dorsal anterior cells invaginate to form an internal layer from which the visceral mesoderm is derived. Ventral anterior cells form progenitors of mesodermal glial cells. Dorsal posterior cells form heart. Ventral and dorsal posterior cells form somatic muscles. We conclude that the metamerically repeated anterior-posterior subdivision of the mesoderm is an essential element in laying out the pattern of mesodermal progenitor cells and in distinguishing between an internal cell layer which will give rise to the progenitors of visceral muscles and an external layer which will generate the somatic muscles and the heart.


Sign in / Sign up

Export Citation Format

Share Document