Observations on cell lineage of internal organs of Drosophila

Development ◽  
1986 ◽  
Vol 91 (1) ◽  
pp. 251-266
Author(s):  
Peter A. Lawrence ◽  
Paul Johnston

Adult Drosophila mosaics can be used to study cell lineage and to map relative positions of primordia at the blastoderm stage. This information can define which germ layer an organ comes from and can help build models of genetic regulation of development. Here we use the sdh cell marker to map internal organs in mosaics made by nuclear transplantation. We confirm that oenocytes arise from the same progenitors as the adult epidermis, but that muscles and fat body have a separate (mesodermal) origin and that the precursors of epidermis and central neurones are closely intermingled in the ventral, but not dorsal, epidermis. We find that the malpighian tubules are more closely related to the hindgut than the midgut and are therefore ectodermal in origin. We find that each intersegmental muscle in the thorax arises from one specific parasegment in the embryo, but that very small numbers of myoblasts wander and contribute to muscles of inappropriate segments. We present evidence indicating that the visceral muscles of the midgut have a widely dispersed origin (over much of the embryo) while the somatic mesoderm of the female gonad comes from a small number of abdominal segments. The visceral mesoderm of the hindgut develops from a localized posterior region of the embryo.

Development ◽  
1998 ◽  
Vol 125 (4) ◽  
pp. 713-723 ◽  
Author(s):  
V. Riechmann ◽  
K.P. Rehorn ◽  
R. Reuter ◽  
M. Leptin

The somatic muscles, the heart, the fat body, the somatic part of the gonad and most of the visceral muscles are derived from a series of segmentally repeated primordia in the Drosophila mesoderm. This work describes the early development of the fat body and its relationship to the gonadal mesoderm, as well as the genetic control of the development of these tissues. Segmentation and dorsoventral patterning genes define three regions in each parasegment in which fat body precursors can develop. Fat body progenitors in these regions are specified by different genetic pathways. Two regions require engrailed and hedgehog for their development while the third is controlled by wingless. decapentaplegic and one or more unknown genes determine the dorsoventral extent of these regions. In each of parasegments 10–12 one of these regions generates somatic gonadal precursors instead of fat body. The balance between fat body and somatic gonadal fate in these serially homologous cell clusters is controlled by at least five genes. We suggest a model in which tinman, engrailed and wingless are necessary to permit somatic gonadal develoment, while serpent counteracts the effects of these genes and promotes fat body development. The homeotic gene abdominalA limits the region of serpent activity by interfering in a mutually repressive feed back loop between gonadal and fat body development.


Development ◽  
1992 ◽  
Vol 116 (4) ◽  
pp. 1203-1220 ◽  
Author(s):  
A.Y. Hartenstein ◽  
A. Rugendorff ◽  
U. Tepass ◽  
V. Hartenstein

The complex embryonic phenotype of the six neurogenic mutations Notch, mastermind, big brain, Delta, Enhancer of split and neuralized was analyzed by using different antibodies and PlacZ markers, which allowed us to label most of the known embryonic tissues. Our results demonstrate that all of the neurogenic mutants show abnormalities in many different organs derived from all three germ layers. Defects caused by the neurogenic mutations in ectodermally derived tissues fell into two categories. First, all cell types that delaminate from the ectoderm (neuroblasts, sensory neurons, peripheral glia cells and oenocytes) are increased in number. Secondly, ectodermal tissues that in the wild type form epithelial structures lose their epithelial phenotype and dissociate (optic lobe, stomatogastric nervous system) or show significant differentiative abnormalities (trachea, Malpighian tubules and salivary gland). Abnormalities in tissues derived from the mesoderm were observed in all six neurogenic mutations. Most importantly, somatic myoblasts do not fuse and/or form an aberrant muscle pattern. Cardioblasts (which form the embryonic heart) are increased in number and show differentiative abnormalities; other mesodermal cell types (fat body, pericardial cells) are significantly decreased. The development of the endoderm (midgut rudiments) is disrupted in most of the neurogenic mutations (Notch, Delta, Enhancer of split and neuralized) during at least two stages. Defects occur as early as during gastrulation when the invaginating midgut rudiments prematurely lose their epithelial characteristics. Later, the transition of the midgut rudiments to form the midgut epithelium does not occur. In addition, the number of adult midgut precursor cells that segregate from the midgut rudiments is strongly increased. We propose that, at least in the ectodermally and endodermally derived tissues, neurogenic gene function is primarily involved in interactions among cells that need to acquire or to maintain an epithelial phenotype.


Development ◽  
1993 ◽  
Vol 118 (3) ◽  
pp. 719-729 ◽  
Author(s):  
R. Bodmer

The homeobox-containing gene tinman (msh-2, Bodmer et al., 1990 Development 110, 661–669) is expressed in the mesoderm primordium, and this expression requires the function of the mesoderm determinant twist. Later in development, as the first mesodermal subdivisions are occurring, expression becomes limited to the visceral mesoderm and the heart. Here, I show that the function of tinman is required for visceral muscle and heart development. Embryos that are mutant for the tinman gene lack the appearance of visceral mesoderm and of heart primordia, and the fusion of the anterior and posterior endoderm is impaired. Even though tinman mutant embryos do not have a heart or visceral muscles, many of the somatic body wall muscles appear to develop although abnormally. When the tinman cDNA is ubiquitously expressed in tinman mutant embryos, via a heatshock promoter, formation of heart cells and visceral mesoderm is partially restored, tinman seems to be one of the earliest genes required for heart development and the first gene reported for which a crucial function in the early mesodermal subdivisions has been implicated.


1957 ◽  
Vol 34 (2) ◽  
pp. 276-289
Author(s):  
B. A. KILBY ◽  
ELISABETH NEVILLE

1. Homogenates of fat-body of Schistocerca gregaria Forsk. were shown to catalyse transamination reactions between α-ketoglutarate and numerous α-amino acids. The aspartate/glutamate and alanine/glutamate transaminases were the most active. They were present in both the ‘soluble’ and the mitochondrial fractions of fat-body cells and also in Malpighian tubules and mid-gut wall. The other transaminases in the fat-body were confined to the mitochondrial fraction. 2. Fat-body, Malpighian tubule and mid-gut wall homogenates were able to convert glutamic acid into glutamine, a compound which could also act as an amino-group donor in some transamination reactions. 3. A glutamate-cytochrome c reductase system which involved diphosphopyridine nucleotide was present in fat-body. 4. Fat-body contained an active arginase, but urease could not be detected. A D-amino-acid oxidase was present, together with a less active L-amino-acid oxidase. 5. In general, it appears that amino-acid metabolism in the locust resembles that in higher animals.


1977 ◽  
Vol 168 (3) ◽  
pp. 513-520 ◽  
Author(s):  
P Johnson ◽  
H H Rees

1. The C-20 hydroxylation of alpha-ecdysone to produce beta-ecdysone was investigated in the desert locust, Schistocerca gregaria. 2. alpha-Ecdysone C-20 hydroxylase activity was located primarily in the fat-body and Malpighian tubules. The properties of the hydroxylation system from Malpighian tubules investigated further. 3. The enzyme system was mitochondrial, had a pH optimum of 6.5, an apparent Km of 12.5 micron and required O2 and NADPH. 4. The activity of the hydroxylation system showed developmental variation within the fifth instar, the maximum activity corresponding to the maximum tire of endogenous moulting hormone. The significance of these results is assessed in relation to the control of the endogenous titre of beta-ecdysone. 5. The mechanism of the hydroxylation system was investigated by using known inhibitors of hydroxylation reactions such as CO, metyrapone and cyanide. 6. The CO difference spectrum of the reduced mitochondrial preparation indicated the presence of cytochrome P-450 in the preparation. 7. It concluded that the alpha-ecdysone C-20 hydroxylase system is a cytochrome P-450-deendent mono-oxygenase.


1975 ◽  
Vol 26 (1) ◽  
pp. 63-72 ◽  
Author(s):  
Moti Nissani

SUMMARYSix hundred and ten gynandromorphs were produced in which anXchromosome loss uncovered the vermilion mutation. The mosaic patterns observed indicate that wild type ocelli are incapable of kynurenine production and that, in addition to the eyes, postembryonic kynurenine producing cells originate from two separate regions of the blastoderm. The positions of these regions on the genetic fate map ofDrosophila melanogastercorrespond to the embryonic precursors which give rise to the kynurenine producing cells of the larval fat body and Malpighian tubes.


2020 ◽  
Vol 152 (3) ◽  
pp. 399-409
Author(s):  
Alex S. Torson ◽  
Lauren E. Des Marteaux ◽  
Susan Bowman ◽  
Meng Lei Zhang ◽  
Kevin Ong ◽  
...  

AbstractMany biological processes are partitioned among organs and tissues, necessitating tissue-specific or organ-specific analysis (particularly for comparative -omics studies). Standardised techniques for tissue identification and dissection are therefore imperative for comparing among studies. Here we describe dissection protocols for isolating six key tissues/organs from larvae of the Asian longhorned beetle, Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae): the supraoesophageal ganglion, posterior midgut, hindgut, Malpighian tubules, fat body, and thoracic muscle. We also describe how to extract haemolymph and preserve whole larvae for measurements such as protein, lipid, and carbohydrate content. We include dissection protocols for both fresh-killed and previously frozen specimens. Although this protocol is developed for A. glabripennis, it should allow standardised tissue collection from larvae of other cerambycids and be readily transferrable to other beetle taxa with similar larval morphology.


1996 ◽  
Vol 16 (11) ◽  
pp. 6542-6552 ◽  
Author(s):  
E B Dubrovsky ◽  
G Dretzen ◽  
E M Berger

The steroid hormone ecdysone causes dramatic changes in the genetic programs leading to the pupariation of Drosophila melanogaster, and the Broad-Complex (BR-C) gene is known to play a key role in this process. Previously we showed that BR-C regulates developmental changes in transcription and chromatin structure of the 67B heat shock gene cluster, which contains four small hsp genes. Importantly, the downregulation of the hsp23 gene in the BR-C mutants correlates with the absence of a DNase I-hypersensitive site (DHS) at position -1400. To study the functional importance of the DHS-1400, we have introduced genomic fragments containing a modified hsp23 gene into the Drosophila germ line. Our analysis shows that the ecdysone response element is necessary but not sufficient for full developmental expression of hsp23 in the late third instar and that there is, indeed, another regulatory element, in the vicinity of DHS-1400. We also show that hsp23 developmental expression is not tissue specific. A construct lacking the ecdysone response element is unable to direct normal hsp23 expression in all tissues except the brain. Similarly, brain-specific expression is BR-C independent, although in the other tissues we find different requirements for BR-C genetic functions. The effect of the br mutations is restricted to wing imaginal discs and midgut tissue, while that of 2Bc is restricted to the fat body and Malpighian tubules, and mutations in the rbp group have no effect in any of the tissues studied. Thus, BR-C regulatory action is mediated through different genetic functions in a tissue-specific manner.


Sign in / Sign up

Export Citation Format

Share Document