The mouse Ulnaless mutation deregulates posterior HoxD gene expression and alters appendicular patterning

Development ◽  
1997 ◽  
Vol 124 (18) ◽  
pp. 3481-3492 ◽  
Author(s):  
C.L. Peichel ◽  
B. Prabhakaran ◽  
T.F. Vogt

The semi-dominant mouse mutation Ulnaless alters patterning of the appendicular but not the axial skeleton. Ulnaless forelimbs and hindlimbs have severe reductions of the proximal limb and less severe reductions of the distal limb. Genetic and physical mapping has failed to separate the Ulnaless locus from the HoxD gene cluster (Peichel, C. L., Abbott, C. M. and Vogt, T. F. (1996) Genetics 144, 1757–1767). The Ulnaless limb phenotypes are not recapitulated by targeted mutations in any single HoxD gene, suggesting that Ulnaless may be a gain-of-function mutation in a coding sequence or a regulatory mutation. Deregulation of 5′ HoxD gene expression is observed in Ulnaless limb buds. There is ectopic expression of Hoxd-13 and Hoxd-12 in the proximal limb and reduction of Hoxd-13, Hoxd-12 and Hoxd-11 expression in the distal limb. Skeletal reductions in the proximal limb may be a consequence of posterior prevalence, whereby proximal misexpression of Hoxd-13 and Hoxd-12 results in the transcriptional and/or functional inactivation of Hox group 11 genes. The Ulnaless digit phenotypes are attributed to a reduction in the distal expression of Hoxd-13, Hoxd-12, Hoxd-11 and Hoxa-13. In addition, Hoxd-13 expression is reduced in the genital bud, consistent with the observed alterations of the Ulnaless penian bone. No alterations of HoxD expression or skeletal phenotypes were observed in the Ulnaless primary axis. We propose that the Ulnaless mutation alters a cis-acting element that regulates HoxD expression specifically in the appendicular axes of the embryo.

Development ◽  
2001 ◽  
Vol 128 (12) ◽  
pp. 2341-2350
Author(s):  
Makoto Kobayashi ◽  
Keizo Nishikawa ◽  
Masayuki Yamamoto

Expression of gata1 is regulated through multiple cis-acting GATA motifs. To elucidate regulatory mechanisms of the gata1 gene, we have used zebrafish. To this end, we isolated and analyzed zebrafish gata1 genomic DNA, which resulted in the discovery of a novel intron that was unknown in previous analyses. This intron corresponds to the first intron of other vertebrate Gata1 genes. GFP reporter analyses revealed that this intron and a distal double GATA motif in the regulatory region are important for the regulation of zebrafish gata1 gene expression. To examine whether GATA1 regulates its own gene expression, we microinjected into embryos a GFP reporter gene linked successively to the gata1 gene regulatory region and to GATA1 mRNA. Surprisingly, ectopic expression of the reporter gene was induced at the site of GATA1 overexpression and was dependent on the distal double GATA motif. Functional domain analyses using transgenic fish lines that harbor the gata1-GFP reporter construct revealed that both the N- and C-terminal zinc-finger domains of GATA1, hence intact GATA1 function, are required for the ectopic GFP expression. These results provide the first in vivo evidence that gata1 gene expression undergoes positive autoregulation.


Development ◽  
2002 ◽  
Vol 129 (14) ◽  
pp. 3325-3334 ◽  
Author(s):  
Ira E. Clark ◽  
Krista C. Dobi ◽  
Heather K. Duchow ◽  
Anna N. Vlasak ◽  
Elizabeth R. Gavis

Translational repression of maternal nanos (nos) mRNA by a cis-acting Translational Control Element (TCE) in the nos 3′UTR is critical for anterior-posterior patterning of the Drosophila embryo. We show, through ectopic expression experiments, that the nos TCE is capable of repressing gene expression at later stages of development in neuronal cells that regulate the molting cycle. Our results predict additional targets of TCE-mediated repression within the nervous system. They also suggest that mechanisms that regulate maternal mRNAs, like TCE-mediated repression, may function more widely during development to spatially or temporally control gene expression.


PLoS ONE ◽  
2007 ◽  
Vol 2 (8) ◽  
pp. e754 ◽  
Author(s):  
Renata Freitas ◽  
GuangJun Zhang ◽  
Martin J. Cohn

Development ◽  
1996 ◽  
Vol 122 (6) ◽  
pp. 1821-1828 ◽  
Author(s):  
D.M. Duprez ◽  
K. Kostakopoulou ◽  
P.H. Francis-West ◽  
C. Tickle ◽  
P.M. Brickell

Bone morphogenetic protein-2 (BMP-2) has been implicated in the polarizing region signalling pathway, which specifies pattern across the antero-posterior of the developing vertebrate limb. Retinoic acid and Sonic Hedgehog (SHH) can act as polarizing signals; when applied anteriorly in the limb bud, they induce mirror-image digit duplications and ectopic Bmp-2 expression in anterior mesenchyme. In addition, the two signals can activate Fgf-4 expression in anterior ridge and HoxD expression in anterior mesenchyme. We tested the role of BMP-2 in this signalling cascade by ectopically expressing human BMP-2 (hBMP-2) at the anterior margin of the early wing bud using a replication defective retroviral vector, and found that ectopic expression of Fgf-4 was induced in the anterior part of the apical ectodermal ridge, followed later by ectopic expression of Hoxd-11 and Hoxd-13 in anterior mesenchyme. This suggests that BMP-2 is involved in regulating Fgf-4 and HoxD gene expression in the normal limb bud. Ectopically expressed hBMP-2 also induced duplication of digit 2 and bifurcation of digit 3, but could not produce the mirror-image digit duplications obtained with SHH-expressing cells. These results suggest that BMP-2 may be involved primarily in maintenance of the ridge, and in the link between patterning and outgrowth of the limb bud.


Development ◽  
2000 ◽  
Vol 127 (23) ◽  
pp. 5093-5100 ◽  
Author(s):  
M. del Mar Lorente ◽  
C. Marcos-Gutierrez ◽  
C. Perez ◽  
J. Schoorlemmer ◽  
A. Ramirez ◽  
...  

The products of the Polycomb group (PcG) of genes act as transcriptional repressors involved in the maintenance of homeotic gene expression patterns throughout development, from flies to mice. Biochemical and molecular evidence suggests that the mouse Ring1A gene is a member of the PcG of genes. However, genetic evidence is needed to establish PcG function for Ring1A, since contrary to all other murine PcG genes, there is no known Drosophila PcG gene encoding a homolog of the Ring1A protein. To study Ring1A function we have generated a mouse line lacking Ring1A and mouse lines overexpressing Ring1A. Both Ring1A(−/−)and Ring1A(+/−) mice show anterior transformations and other abnormalities of the axial skeleton, which indicates an unusual sensitivity of axial skeleton patterning to Ring1A gene dosage. Ectopic expression of Ring1A also results in dose-dependent anterior transformations of vertebral identity, many of which, interestingly, are shared by Ring1A(−/−) mice. In contrast, the alterations of Hox gene expression observed in both type of mutant mice are subtle and involve a reduced number of Hox genes. Taken together, these results provide genetic evidence for a PcG function of the mouse Ring1A gene.


2021 ◽  
Vol 22 (5) ◽  
pp. 2599
Author(s):  
Mégane Collobert ◽  
Ozvan Bocher ◽  
Anaïs Le Nabec ◽  
Emmanuelle Génin ◽  
Claude Férec ◽  
...  

About 8% of the human genome is covered with candidate cis-regulatory elements (cCREs). Disruptions of CREs, described as “cis-ruptions” have been identified as being involved in various genetic diseases. Thanks to the development of chromatin conformation study techniques, several long-range cystic fibrosis transmembrane conductance regulator (CFTR) regulatory elements were identified, but the regulatory mechanisms of the CFTR gene have yet to be fully elucidated. The aim of this work is to improve our knowledge of the CFTR gene regulation, and to identity factors that could impact the CFTR gene expression, and potentially account for the variability of the clinical presentation of cystic fibrosis as well as CFTR-related disorders. Here, we apply the robust GWAS3D score to determine which of the CFTR introns could be involved in gene regulation. This approach highlights four particular CFTR introns of interest. Using reporter gene constructs in intestinal cells, we show that two new introns display strong cooperative effects in intestinal cells. Chromatin immunoprecipitation analyses further demonstrate fixation of transcription factors network. These results provide new insights into our understanding of the CFTR gene regulation and allow us to suggest a 3D CFTR locus structure in intestinal cells. A better understand of regulation mechanisms of the CFTR gene could elucidate cases of patients where the phenotype is not yet explained by the genotype. This would thus help in better diagnosis and therefore better management. These cis-acting regions may be a therapeutic challenge that could lead to the development of specific molecules capable of modulating gene expression in the future.


Genetics ◽  
1996 ◽  
Vol 142 (2) ◽  
pp. 417-423
Author(s):  
Wayne K Versaw ◽  
Robert L Metzenberg

Abstract A transgenic position effect that causes activator-independent gene expression has been described previously for three Neurospora crassa phosphate-repressible genes. We report analogous findings for two additional positively regulated genes, qa-2  + and ars-1  +, indicating that such position effects are not limited to genes involved in phosphorus metabolism. In addition, we have characterized a number of mutants that display activator-independent gene expression. Each of these mutants contains a chromosomal rearrangement with one breakpoint located in the 5’-upstream region of the affected gene. This suggests that the rearrangements are associated with activator-independent gene expression and that these cis-acting mutations may represent a position effect similar to that responsible for rendering some transgenes independent of their transcriptional activators. We suggest that positively regulated genes in N.  crassa are normally held in a transcriptionally repressed state by a cis-acting mechanism until specifically activated. Disruption of this cis-acting mechanism, either by random integration of a gene by transformation or by chromosomal rearrangement, renders these genes independent or partly independent of the transcriptional activator on which they normally depend.


Author(s):  
Jingyi Li ◽  
Mi-Ok Lee ◽  
Brian W Davis ◽  
Ping Wu ◽  
Shu-Man Hsieh-Li ◽  
...  

Abstract The Crest mutation in chicken shows incomplete dominance and causes a spectacular phenotype in which the small feathers normally present on the head are replaced by much larger feathers normally present only in dorsal skin. Using whole genome sequencing, we show that the crest phenotype is caused by a 197 bp duplication of an evolutionarily conserved sequence located in the intron of HOXC10 on chromosome 33. A diagnostic test showed that the duplication was present in all 54 crested chickens representing eight breeds and absent from all 433 non-crested chickens representing 214 populations. The mutation causes ectopic expression of at least five closely linked HOXC genes, including HOXC10, in cranial skin of crested chickens. The result is consistent with the interpretation that the crest feathers are caused by an altered body region identity. The upregulated HOXC gene expression is expanded to skull tissue of Polish chickens showing a large crest often associated with cerebral hernia, but not in Silkie chickens characterized by a small crest, both homozygous for the duplication. Thus, the 197 bp duplication is required for the development of a large crest and susceptibility to cerebral hernia because only crested chicken show this malformation. However, this mutation is not sufficient to cause herniation because this malformation is not present in breeds with a small crest, like Silkie chickens.


Sign in / Sign up

Export Citation Format

Share Document