Taste buds develop autonomously from endoderm without induction by cephalic neural crest or paraxial mesoderm

Development ◽  
1997 ◽  
Vol 124 (5) ◽  
pp. 949-957 ◽  
Author(s):  
L.A. Barlow ◽  
R.G. Northcutt

Although it had long been believed that embryonic taste buds in vertebrates were induced to differentiate by ingrowing nerve fibers, we and others have recently shown that embryonic taste buds can develop normally in the complete absence of innervation. This leads to the question of which tissues, if any, induce the formation of taste buds in oropharyngeal endoderm. We proposed that taste buds, like many specialized epithelial cells, might arise via an inductive interaction between the endodermal epithelial cells that line the oropharynx and the adjacent mesenchyme that is derived from both cephalic neural crest and paraxial mesoderm. Using complementary grafting and explant culture techniques, however, we have now found that well-differentiated taste buds will develop in tissue completely devoid of neural crest and paraxial mesoderm derivatives. When the presumptive oropharyngeal region was removed from salamander embryos prior to the onset of cephalic neural crest migration, taste buds developed in grafts and explants coincident with their appearance in intact control embryos. Similarly, explants from neurulae in which movement of paraxial mesoderm had not yet begun also developed taste buds after 9–12 days in vitro. We conclude that neither cranial neural crest nor paraxial mesoderm is responsible for the induction of embryonic taste buds. Surprisingly, the ability to develop taste buds late in embryonic development seems to be an intrinsic feature of the oropharyngeal endoderm that is determined by the completion of gastrulation.

Development ◽  
1999 ◽  
Vol 126 (10) ◽  
pp. 2181-2189 ◽  
Author(s):  
B.J. Eickholt ◽  
S.L. Mackenzie ◽  
A. Graham ◽  
F.S. Walsh ◽  
P. Doherty

Collapsin-1 belongs to the Semaphorin family of molecules, several members of which have been implicated in the co-ordination of axon growth and guidance. Collapsin-1 can function as a selective chemorepellent for sensory neurons, however, its early expression within the somites and the cranial neural tube (Shepherd, I., Luo, Y., Raper, J. A. and Chang, S. (1996) Dev. Biol. 173, 185–199) suggest that it might contribute to the control of additional developmental processes in the chick. We now report a detailed study on the expression of collapsin-1 as well as on the distribution of collapsin-1-binding sites in regions where neural crest cell migration occurs. collapsin-1 expression is detected in regions bordering neural crest migration pathways in both the trunk and hindbrain regions and a receptor for collapsin-1, neuropilin-1, is expressed by migrating crest cells derived from both regions. When added to crest cells in vitro, a collapsin-1-Fc chimeric protein induces morphological changes similar to those seen in neuronal growth cones. In order to test the function of collapsin-1 on the migration of neural crest cells, an in vitro assay was used in which collapsin-1-Fc was immobilised in alternating stripes consisting of collapsin-Fc/fibronectin versus fibronectin alone. Explanted neural crest cells derived from both trunk and hindbrain regions avoided the collapsin-Fc-containing substratum. These results suggest that collapsin-1 signalling can contribute to the patterning of neural crest cell migration in the developing chick.


2005 ◽  
Vol 11 (4) ◽  
pp. 283-292 ◽  
Author(s):  
Sandra S. Sands ◽  
William D. Meek ◽  
Jun Hayashi ◽  
Robert J. Ketchum

Isolation and culture of thymic epithelial cells (TECs) using conventional primary tissue culture techniques under conditions employing supplemented low calcium medium yielded an immortalized cell line derived from the LDA rat (Lewis [Rt1l] cross DA [Rt1a]) that could be manipulated in vitro. Thymi were harvested from 4–5-day-old neonates, enzymically digested using collagenase (1 mg/ml, 37°C, 1 h) and cultured in low calcium WAJC404A medium containing cholera toxin (20 ng/ml), dexamethasone (10 nM), epidermal growth factor (10 ng/ml), insulin (10 μg/ml), transferrin (10 μg/ml), 2% calf serum, 2.5% Dulbecco's Modified Eagle's Medium (DMEM), and 1% antibiotic/antimycotic. TECs cultured in low calcium displayed round to spindle-shaped morphology, distinct intercellular spaces (even at confluence), and dense reticular-like keratin patterns. In high calcium (0.188 mM), TECs formed cobblestone-like confluent monolayers that were resistant to trypsinization (0.05%) and displayed keratin intermediate filaments concentrated at desmosomal junctions between contiguous cells. Changes in cultured TEC morphology were quantified by an analysis of desmosome/membrane relationships in high and low calcium media. Desmosomes were significantly increased in the high calcium medium. These studies may have value when considering the growth conditions of cultured primary cell lines like TECs.


Development ◽  
1996 ◽  
Vol 122 (4) ◽  
pp. 1103-1111 ◽  
Author(s):  
L.A. Barlow ◽  
C.B. Chien ◽  
R.G. Northcutt

It has been hypothesized that taste buds are induced by contact with developing cranial nerve fibers late in embryonic development, since descriptive studies indicate that during embryonic development taste cell differentiation occurs concomitantly with or slightly following the advent of innervation. However, experimental evidence delineating the role of innervation in taste bud development is sparse and equivocal. Using two complementary experimental approaches, we demonstrate that taste cells differentiate fully in the complete absence of innervation. When the presumptive oropharyngeal region was taken from a donor axolotl embryo, prior to its innervation and development of taste buds, and grafted ectopically on to the trunk of a host embryo, the graft developed well-differentiated taste buds. Although grafts were invaded by branches of local spinal nerves, these neurites were rarely found near ectopic taste cells. When the oropharyngeal region was raised in culture, numerous taste buds were generated in the complete absence of neural elements. Taste buds in grafts and in explants were identical to those found in situ both in terms of their morphology and their expression of calretinin and serotonin immunoreactivity. Our findings indicate that innervation is not necessary for complete differentiation of taste receptor cells. We propose that taste buds are either induced in response to signals from other tissues, such as the neural crest, or arise independently through intrinsic patterning of the local epithelium.


Development ◽  
1979 ◽  
Vol 54 (1) ◽  
pp. 185-207
Author(s):  
Peter Thorogood

In the avian embryo ectomesenchyme cells, derived from the mesencephalic level of the cranial neural crest, migrate into the presumptive maxillary region and subsequently differentiateinto the membrane bones and associated secondary cartilage of the upper jaw skeleton. The cartilage arises secondarily within the periosteum at points of articulation between membrane bones and provides an embryonic articulating surface. The stimulus for the differentiation of secondary cartilage is believed to be intermittent pressure and shear created at the developing embryonic movement. The development of one such system - the quadratojugal, has been analysed using organ and explant culture techniques and studied with particular reference to the differentiation of periosteal cells into secondary cartilage. A number of conclusions were reached. (1) Normally only cells at discrete loci express a chondrogenic potential ,in vivo: the periosteal cells at these sites of future articulation become committed to chondrogenesis during stage 35, more than 24 h before cartilage is identifiable ,in vivo. (2) However, cells with a ‘latent’ chondrogenic potential are widespread in membrane bone periosteum and occur over most, if not all, of the surface area of the bone. This potential is expressed in the ‘permissive’ environment created by submersion of the tissue in explant culture or in submerged organ culture. (3) This chondrogenic potential exists long before the time at which commitment of cartilage-forming cells occurs and even presumptive maxillary ectomesenchyme at stage 29 has a limited ability to form cartilage ,in vitro. It is suggested that spatial position is a principal factor controlling the differentiation of secondary cartilage. Ectomesenchyme cells with the potential to form secondary cartilage are widespread but it is only those cells whose migration from the neural crest positions them and their progeny at the site of a presumptive joint which subsequently express this potential. This epigenetic interpretation is discussed in the general context of development mechanisms underlying the spatial and temporal patterns in which neural crest-derived cells differentiate to produce bone and cartilage during the formation of the head skeleton.


Genes ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 351 ◽  
Author(s):  
Brajesh K. Singh ◽  
Ashley L. Cooney ◽  
Sateesh Krishnamurthy ◽  
Patrick L. Sinn

Extracellular vesicles (EVs) are a class of naturally occurring secreted cellular bodies that are involved in long distance cell-to-cell communication. Proteins, lipids, mRNA, and miRNA can be packaged into these vesicles and released from the cell. This information is then delivered to target cells. Since EVs are naturally adapted molecular messengers, they have emerged as an innovative, inexpensive, and robust method to deliver therapeutic cargo in vitro and in vivo. Well-differentiated primary cultures of human airway epithelial cells (HAE) are refractory to standard transfection techniques. Indeed, common strategies used to overexpress or knockdown gene expression in immortalized cell lines simply have no detectable effect in HAE. Here we use EVs to efficiently deliver siRNA or protein to HAE. Furthermore, EVs can deliver CFTR protein to cystic fibrosis donor cells and functionally correct the Cl− channel defect in vitro. EV-mediated delivery of siRNA or proteins to HAE provides a powerful genetic tool in a model system that closely recapitulates the in vivo airways.


1978 ◽  
Vol 76 (3) ◽  
pp. 628-638 ◽  
Author(s):  
M Sieber-Blum ◽  
A M Cohen

To examine possible changes in cell surface carbohydrates, fluorescent lectins were applied at various times during differentiation of neural crest cells in vitro. The pattern and intensity of binding of several lectins changed as the crest cells developed into melanocytes and adrenergic cells. Considerable amounts of concanavalin A (Con A) and wheat germ agglutinin (WGA) bound to all unpigmented cells throughout the culture period. Melanocytes, however, bound much less of these lectins. Soy bean agglutinin (SBA), unlike Con A and WGA, only bound later in development to unpigmented cells at about the time when catecholamines were detected histochemically. Binding of SBA could be induced in younger cultures by pretreating the cells with neuraminidase. Melanocytes, however, did not bind detectable amounts of SBA even if treated with neuraminidase. The SBA-binding sites were often concentrated on cytoplasmic extensions and on contact points between neighboring cells, even when receptor mobility was restricted by prefixation of the cells or adsorption of lectin at 0 degrees C. All three lectins bound to cell processes resembling nerve fibers in particularly high amounts.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Cedric Thues ◽  
Jorge S. Valadas ◽  
Liesbeth Deaulmerie ◽  
Ann Geens ◽  
Amit K. Chouhan ◽  
...  

AbstractCircumferential skin creases (CSC-KT) is a rare polymalformative syndrome characterised by intellectual disability associated with skin creases on the limbs, and very characteristic craniofacial malformations. Previously, heterozygous and homozygous mutations in MAPRE2 were found to be causal for this disease. MAPRE2 encodes for a member of evolutionary conserved microtubule plus end tracking proteins, the end binding (EB) family. Unlike MAPRE1 and MAPRE3, MAPRE2 is not required for the persistent growth and stabilization of microtubules, but plays a role in other cellular processes such as mitotic progression and regulation of cell adhesion. The mutations identified in MAPRE2 all reside within the calponin homology domain, responsible to track and interact with the plus-end tip of growing microtubules, and previous data showed that altered dosage of MAPRE2 resulted in abnormal branchial arch patterning in zebrafish. In this study, we developed patient derived induced pluripotent stem cell lines for MAPRE2, together with isogenic controls, using CRISPR/Cas9 technology, and differentiated them towards neural crest cells with cranial identity. We show that changes in MAPRE2 lead to alterations in neural crest migration in vitro but also in vivo, following xenotransplantation of neural crest progenitors into developing chicken embryos. In addition, we provide evidence that changes in focal adhesion might underlie the altered cell motility of the MAPRE2 mutant cranial neural crest cells. Our data provide evidence that MAPRE2 is involved in cellular migration of cranial neural crest and offers critical insights into the mechanism underlying the craniofacial dysmorphisms and cleft palate present in CSC-KT patients. This adds the CSC-KT disorder to the growing list of neurocristopathies.


Development ◽  
1988 ◽  
Vol 102 (1) ◽  
pp. 237-250 ◽  
Author(s):  
E.J. Mackie ◽  
R.P. Tucker ◽  
W. Halfter ◽  
R. Chiquet-Ehrismann ◽  
H.H. Epperlein

The distribution of the extracellular matrix (ECM) glycoprotein, tenascin, has been compared with that of fibronectin in neural crest migration pathways of Xenopus laevis, quail and rat embryos. In all species studied, the distribution of tenascin, examined by immunohistochemistry, was more closely correlated with pathways of migration than that of fibronectin, which is known to be important for neural crest migration. In Xenopus laevis embryos, anti-tenascin stained the dorsal fin matrix and ECM along the ventral route of migration, but not the ECM found laterally between the ectoderma and somites where neural crest cells do not migrate. In quail embryos, the appearance of tenascin in neural crest pathways was well correlated with the anterior-to-posterior wave of migration. The distribution of tenascin within somites was compared with that of the neural crest marker, HNK-1, in quail embryos. In the dorsal halves of quail somites which contained migrating neural crest cells, the predominant tenascin staining was in the anterior halves of the somites, codistributed with the migrating cells. In rat embryos, tenascin was detectable in the somites only in the anterior halves. Tenascin was not detectable in the matrix of cultured quail neural crest cells, but was in the matrix surrounding somite and notochord cells in vitro. Neural crest cells cultured on a substratum of tenascin did not spread and were rounded. We propose that tenascin is an important factor controlling neural crest morphogenesis, perhaps by modifying the interaction of neural crest cells with fibronectin.


Development ◽  
1995 ◽  
Vol 121 (11) ◽  
pp. 3733-3743 ◽  
Author(s):  
C.E. Krull ◽  
A. Collazo ◽  
S.E. Fraser ◽  
M. Bronner-Fraser

Trunk neural crest cells migrate through the somites in a striking segmental fashion, entering the rostral but not caudal sclerotome, via cues intrinsic to the somites. Attempts to define the molecular bases of these cues have been hampered by the lack of an accessible assay system. To examine trunk neural crest migration over time and to perturb candidate guiding molecules, we have developed a novel explant preparation. Here, we demonstrate that trunk regions of the chicken embryo, placed in explant culture, continue to develop apparently normally for 2 days. Neural crest cells, recognized by prelabeling with DiI or by poststaining with the HNK-1 antibody, migrate in the somites of the explants in their typical segmental pattern. Furthermore, this paradigm allows us to follow trunk neural crest migration in situ for the first time using low-light-level videomicroscopy. The trajectories of individual neural crest cells were often complex, with cells migrating in an episodic mode encompassing forward, backward and lateral movements. Frequently, neural crest cells migrated in close-knit groups of 2–4 cells, moving at mean rates of migration of 10–14 microns/hour. Treatment of the explants with the lectin peanut agglutinin (PNA) both slowed the rate and altered the pattern of neural crest migration. Neural crest cells entered both the rostral and caudal halves of the sclerotome with mean rates of migration ranging from 6 to 13 microns/hour. These results suggest that peanut agglutinin-binding molecules are required for the segmental patterning of trunk neural crest migration. Because this approach permits neural crest migration to be both observed and perturbed, it offers the promise of more direct assays of the factors that influence neural crest development.


Sign in / Sign up

Export Citation Format

Share Document