scholarly journals Equivalence of the fly orthodenticle gene and the human OTX genes in embryonic brain development of Drosophila

Development ◽  
1998 ◽  
Vol 125 (9) ◽  
pp. 1703-1710 ◽  
Author(s):  
S. Leuzinger ◽  
F. Hirth ◽  
D. Gerlich ◽  
D. Acampora ◽  
A. Simeone ◽  
...  

Members of the orthodenticle gene family are essential for embryonic brain development in animals as diverse as insects and mammals. In Drosophila, mutational inactivation of the orthodenticle gene results in deletions in anterior parts of the embryonic brain and in defects in the ventral nerve cord. In the mouse, targeted elimination of the homologous Otx2 or Otx1 genes causes defects in forebrain and/or midbrain development. To determine the morphogenetic properties and the extent of evolutionary conservation of the orthodenticle gene family in embryonic brain development, genetic rescue experiments were carried out in Drosophila. Ubiquitous overexpression of the orthodenticle gene rescues both the brain defects and the ventral nerve cord defects in orthodenticle mutant embryos; morphology and nervous system-specific gene expression are restored. Two different time windows exist for the rescue of the brain versus the ventral nerve cord. Ubiquitous overexpression of the human OTX1 or OTX2 genes also rescues the brain and ventral nerve cord phenotypes in orthodenticle mutant embryos; in the brain, the efficiency of morphological rescue is lower than that obtained with overexpression of orthodenticle. Overexpression of either orthodenticle or the human OTX gene homologs in the wild-type embryo results in ectopic neural structures. The rescue of highly complex brain structures in Drosophila by either fly or human orthodenticle gene homologs indicates that these genes are interchangeable between vertebrates and invertebrates and provides further evidence for an evolutionarily conserved role of the orthodenticle gene family in brain development.

2018 ◽  
Vol 217 (10) ◽  
pp. 3464-3479 ◽  
Author(s):  
Wenlong Xia ◽  
Libo Su ◽  
Jianwei Jiao

In mammals, a constant body temperature is an important basis for maintaining life activities. Here, we show that when pregnant mice are subjected to cold stress, the expression of RBM3, a cold-induced protein, is increased in the embryonic brain. When RBM3 is knocked down or knocked out in cold stress, embryonic brain development is more seriously affected, exhibiting abnormal neuronal differentiation. By detecting the change in mRNA expression during maternal cold stress, we demonstrate that Yap and its downstream molecules are altered at the RNA level. By analyzing RNA-binding motif of RBM3, we find that there are seven binding sites in 3′UTR region of Yap1 mRNA. Mechanistically, RBM3 binds to Yap1-3′UTR, regulates its stability, and affects the expression of YAP1. RBM3 and YAP1 overexpression can partially rescue the brain development defect caused by RBM3 knockout in cold stress. Collectively, our data demonstrate that cold temperature affects brain development, and RBM3 acts as a key protective regulator in cold stress.


Development ◽  
2002 ◽  
Vol 129 (9) ◽  
pp. 2121-2128
Author(s):  
Damon T. Page

In vertebrates (deuterostomes), brain patterning depends on signals from adjacent tissues. For example, holoprosencephaly, the most common brain anomaly in humans, results from defects in signaling between the embryonic prechordal plate (consisting of the dorsal foregut endoderm and mesoderm) and the brain. I have examined whether a similar mechanism of brain development occurs in the protostome Drosophila, and find that the foregut and mesoderm act to pattern the fly embryonic brain. When the foregut and mesoderm of Drosophila are ablated, brain patterning is disrupted. The loss of Hedgehog expressed in the foregut appears to mediate this effect, as it does in vertebrates. One mechanism whereby these defects occur is a disruption of normal apoptosis in the brain. These data argue that the last common ancestor of protostomes and deuterostomes had a prototype of the brains present in modern animals, and also suggest that the foregut and mesoderm contributed to the patterning of this ‘proto-brain’. They also argue that the foreguts of protostomes and deuterostomes, which have traditionally been assigned to different germ layers, are actually homologous.


1984 ◽  
Vol 15 (2) ◽  
pp. 155-166 ◽  
Author(s):  
Harvey S. Singer ◽  
Michael Tiemeyer ◽  
John C. Hedreen ◽  
John Gearhart ◽  
Joseph T. Coyle

2008 ◽  
Vol 87 (3) ◽  
pp. 157-169 ◽  
Author(s):  
Elly Suk Hen Chow ◽  
Michelle Nga Yu Hui ◽  
Chun Chi Lin ◽  
Shuk Han Cheng

1995 ◽  
Vol 92 (6) ◽  
pp. 2239-2243 ◽  
Author(s):  
D. H. Turnbull ◽  
T. S. Bloomfield ◽  
H. S. Baldwin ◽  
F. S. Foster ◽  
A. L. Joyner

2016 ◽  
Vol 300 (2) ◽  
pp. 415-424
Author(s):  
Shun Wang ◽  
Zhe Dong ◽  
Shen Li ◽  
Haotian Yin ◽  
Zhifu Zhao ◽  
...  

Author(s):  
D. Benzid ◽  
C. Morris ◽  
R.-M. Barthélémy

This investigation constitutes the first study of the serotoninergic nervous system in calanoid copepods (crustaceans). Serotonin (5-HT), a neurotransmitter which plays a part in many biological processes, has been detected by immunofluorescence in the brain, the circumoesophageal collar and the ventral nerve cord of the marine species Centropages typicus.


2009 ◽  
Vol 163 (1-2) ◽  
pp. 58-62 ◽  
Author(s):  
Veerle M. Darras ◽  
Stijn L.J. Van Herck ◽  
Stijn Geysens ◽  
Geert E. Reyns

Sign in / Sign up

Export Citation Format

Share Document