CRABS CLAW and SPATULA, two Arabidopsis genes that control carpel development in parallel with AGAMOUS

Development ◽  
1999 ◽  
Vol 126 (11) ◽  
pp. 2377-2386 ◽  
Author(s):  
J. Alvarez ◽  
D.R. Smyth

To help understand the process of carpel morphogenesis, the roles of three carpel development genes have been partitioned genetically. Mutants of CRABS CLAW cause the gynoecium to develop into a wider but shorter structure, and the two carpels are unfused at the apex. Mutants of a second gene, SPATULA, show reduced growth of the style, stigma, and septum, and the transmitting tract is absent. Double mutants of crabs claw and spatula with homeotic mutants that develop ectopic carpels demonstrate that CRABS CLAW and SPATULA are necessary for, and inseparable from, carpel development, and that their action is negatively regulated by A and B organ identity genes. The third carpel gene studied, AGAMOUS, encodes C function that has been proposed to fully specify carpel identity. When AGAMOUS function is removed together with the A class gene APETALA2, however, the organs retain many carpelloid properties, suggesting that other genes are also involved. We show here that further mutant disruption of both CRABS CLAW and SPATULA function removes remaining carpelloid properties, revealing that the three genes together are necessary to generate the mature gynoecium. In particular, AGAMOUS is required to specify the identity of the carpel wall and to promote the stylar outgrowth at the apex, CRABS CLAW suppresses radial growth of the developing gynoecium but promotes its longitudinal growth, and SPATULA supports development of the carpel margins and tissues derived from them. The three genes mostly act independently, although there is genetic evidence that CRABS CLAW enhances AGAMOUS and SPATULA function.

1980 ◽  
Vol 60 (3) ◽  
pp. 911-915
Author(s):  
A. LIPTAY ◽  
J. K. MUEHMER

In the assessment of baby carrot cultivars for various agronomic characters, three patterns of growth were observed in various carrot cultivars. Carrots of the first growth pattern had a rapid longitudinal rate of extension relative to their radial growth rate. These roots outgrew the baby carrot length earlier than other cultivars. In the second type of growth, radial extension was rapid relative to longitudinal growth and consequently these carrots became too thick before achieving sufficient length. Carrots from cultivars with the third pattern of growth had a desirable longitudinal rate of extension relative to radial growth. It was furthermore observed that under very wet soil conditions longitudinal growth was inhibited more than radial growth.


Development ◽  
2000 ◽  
Vol 127 (6) ◽  
pp. 1267-1276 ◽  
Author(s):  
P.D. Jenik ◽  
V.F. Irish

The shoot apical meristem of Arabidopsis thaliana consists of three cell layers that proliferate to give rise to the aerial organs of the plant. By labeling cells in each layer using an Ac-based transposable element system, we mapped their contributions to the floral organs, as well as determined the degree of plasticity in this developmental process. We found that each cell layer proliferates to give rise to predictable derivatives: the L1 contributes to the epidermis, the stigma, part of the transmitting tract and the integument of the ovules, while the L2 and L3 contribute, to different degrees, to the mesophyll and other internal tissues. In order to test the roles of the floral homeotic genes in regulating these patterns of cell proliferation, we carried out similar clonal analyses in apetala3-3 and agamous-1 mutant plants. Our results suggest that cell division patterns are regulated differently at different stages of floral development. In early floral stages, the pattern of cell divisions is dependent on position in the floral meristem, and not on future organ identity. Later, during organogenesis, the layer contributions to the organs are controlled by the homeotic genes. We also show that AGAMOUS is required to maintain the layered structure of the meristem prior to organ initiation, as well as having a non-autonomous role in the regulation of the layer contributions to the petals.


Development ◽  
2001 ◽  
Vol 128 (22) ◽  
pp. 4657-4667 ◽  
Author(s):  
Stuart F. Baum ◽  
Yuval Eshed ◽  
John L. Bowman

In contrast to the conservation of floral organ order in angiosperm flowers, nectary glands can be found in various floral and extrafloral positions. Since in Arabidopsis, the nectary develops only at the base of stamens, its specification was assayed with regard to the floral homeotic ABC selector genes. We show that the nectary can form independently of any floral organ identity gene but is restricted to the ‘third whorl’ domain in the flower. This domain is, in part, specified redundantly by LEAFY and UNUSUAL FLORAL ORGANS. Even though nectary glands arise from cells previously expressing the B class genes, their proper development requires the down-regulation of B class gene activity. While CRABS CLAW is essential for nectary gland formation, its ectopic expression is not sufficient to induce ectopic nectary formation. We show that in Arabidopsis multiple factors act to restrict the nectary to the flower, and surprisingly, some of these factors are LEAFY and UNUSUAL FLORAL ORGANS.


Author(s):  
Moin Ahmad Khan ◽  
M. Badruzzaman Siddiqui

This study on radial growth in the stem of Citrus was carried out with an aim to notice the behavior of vascular cambium with respect to climatic and age effects. The fusiform initials vary in length from 137 to 363 μm in C. limon, 100 to 463 μm in C. paradisi, 137 to 413 μm in C. reticulata var. kinnow, and 137 to 375 μm in C. sinensis. The length rises with age, followed by decline and then again increase in C. limon. In C. paradisi, there is increase up to maximum and after decline is soon followed by constancy. In C. reticulata var. kinnow, increase in length from top to base in C. sinensis, increase up to maximum followed by a decline. Swelling of cambial cells occurs in the third week of March in C. limon, last week of March in C. paradisi, third week of April in C. reticulata var. kinnow, and second week of April in C. sinensis. The cambium turns dormant in early October in C. limon, late December in C. paradisi, early December in C. reticulata var. kinnow, and early November in C. sinensis. Thus, the cambium remains active for about 6 months in C. limon and C. sinensis, 9 months in C. paradisi, and 7 months in C. reticulata var. kinnow.


Author(s):  
Howard J. Swatland

Pre-natal muscle development in pigs starts with myotubes (axial nuclei in a tube of myofibrils) and secondary fibres (peripheral nuclei on an axial strand of myofibrils). By the time of birth, the nuclei of myotubes move to a peripheral position like secondary fibres. As pre-natal secondary fibres grow in length, the number of fibres in a transverse section may appear to increase. This stereology may also occur in post-natal muscles that have tapered fibres anchored in endomysial connective tissue around adjacent fibres and with one or both ends not reaching the end of their fasciculus. Up to 100 days gestation, Peroneus longus (no tapered fibres) had larger (P < 0.001) diameter secondary fibres than Longissimus thoracis (with tapered fibres). Up to 100 days gestation, no radial growth of secondary fibres was detected, but myotubes decreased in diameter (P < 0.001).  From a curve showing the relative numbers of myotubes and secondary fibres, it was deduced that approximately 80% of muscle fibres in pigs are derived from secondary fibres. In post-natal Sartorius muscle there was an increase (P < 0.005) in the apparent number of muscle fibres attributed to longitudinal growth of tapered fibres. Myotubes located centrally within their fasciculi had the same position as slow-contracting fibres with a high myoglobin content in adult muscle. Post-natal changes in muscle fibre histochemistry were achieved through transitional types, probably neurally regulated rather than by differential longitudinal growth of tapered endings. Secondary fibres are important – they give rise to both the majority of muscle fibres in adult pigs and affect subsurface optical pathways and pork colourimetry.


Development ◽  
1999 ◽  
Vol 126 (11) ◽  
pp. 2387-2396 ◽  
Author(s):  
J.L. Bowman ◽  
D.R. Smyth

Studies of plants with mutations in the CRABS CLAW gene indicate that it is involved in suppressing early radial growth of the gynoecium and in promoting its later elongation. It is also required for the initiation of nectary development. To gain further insight, the gene was cloned by chromosome walking. CRABS CLAW encodes a putative transcription factor containing a zinc finger and a helix-loop-helix domain. The latter resembles the first two helices of the HMG box, known to bind DNA. At least five other genes of Arabidopsis carry the same combination of domains, and we have named them the yabby family. The new helix-loop-helix domain itself we call the yabby domain. Consistent with the mutant phenotype, CRABS CLAW expression is mostly limited to carpels and nectaries. It is expressed in gynoecial primordia from their inception, firstly in lateral sectors where it may inhibit radial growth, and later in the epidermis and in four internal strips. The internal expression may be sufficient to support longitudinal growth, as carpels are longer in a crabs claw promoter mutant where expression is now confined to these regions. The patterns of expression of CRABS CLAW in ectopic carpels of floral homeotic mutants suggest that it is negatively regulated by the A and B organ identity functions, but largely independent of C function. CRABS CLAW expression occurs in nectaries throughout their growth and maturation. It is also expressed in their presumptive anlagen so it may specify cells that will later develop as nectaries. Nectaries arise from the floral receptacle at normal positions in all A, B and C organ identity mutants examined, and CRABS CLAW is always expressed within them. Thus CRABS CLAW expression is regulated independently in carpels and nectaries.


1967 ◽  
Vol 31 ◽  
pp. 177-179
Author(s):  
W. W. Shane

In the course of several 21-cm observing programmes being carried out by the Leiden Observatory with the 25-meter telescope at Dwingeloo, a fairly complete, though inhomogeneous, survey of the regionl11= 0° to 66° at low galactic latitudes is becoming available. The essential data on this survey are presented in Table 1. Oort (1967) has given a preliminary report on the first and third investigations. The third is discussed briefly by Kerr in his introductory lecture on the galactic centre region (Paper 42). Burton (1966) has published provisional results of the fifth investigation, and I have discussed the sixth in Paper 19. All of the observations listed in the table have been completed, but we plan to extend investigation 3 to a much finer grid of positions.


1966 ◽  
Vol 25 ◽  
pp. 227-229 ◽  
Author(s):  
D. Brouwer

The paper presents a summary of the results obtained by C. J. Cohen and E. C. Hubbard, who established by numerical integration that a resonance relation exists between the orbits of Neptune and Pluto. The problem may be explored further by approximating the motion of Pluto by that of a particle with negligible mass in the three-dimensional (circular) restricted problem. The mass of Pluto and the eccentricity of Neptune's orbit are ignored in this approximation. Significant features of the problem appear to be the presence of two critical arguments and the possibility that the orbit may be related to a periodic orbit of the third kind.


1988 ◽  
Vol 102 ◽  
pp. 79-81
Author(s):  
A. Goldberg ◽  
S.D. Bloom

AbstractClosed expressions for the first, second, and (in some cases) the third moment of atomic transition arrays now exist. Recently a method has been developed for getting to very high moments (up to the 12th and beyond) in cases where a “collective” state-vector (i.e. a state-vector containing the entire electric dipole strength) can be created from each eigenstate in the parent configuration. Both of these approaches give exact results. Herein we describe astatistical(or Monte Carlo) approach which requires onlyonerepresentative state-vector |RV&gt; for the entire parent manifold to get estimates of transition moments of high order. The representation is achieved through the random amplitudes associated with each basis vector making up |RV&gt;. This also gives rise to the dispersion characterizing the method, which has been applied to a system (in the M shell) with≈250,000 lines where we have calculated up to the 5th moment. It turns out that the dispersion in the moments decreases with the size of the manifold, making its application to very big systems statistically advantageous. A discussion of the method and these dispersion characteristics will be presented.


Author(s):  
Zhifeng Shao

A small electron probe has many applications in many fields and in the case of the STEM, the probe size essentially determines the ultimate resolution. However, there are many difficulties in obtaining a very small probe.Spherical aberration is one of them and all existing probe forming systems have non-zero spherical aberration. The ultimate probe radius is given byδ = 0.43Csl/4ƛ3/4where ƛ is the electron wave length and it is apparent that δ decreases only slowly with decreasing Cs. Scherzer pointed out that the third order aberration coefficient always has the same sign regardless of the field distribution, provided only that the fields have cylindrical symmetry, are independent of time and no space charge is present. To overcome this problem, he proposed a corrector consisting of octupoles and quadrupoles.


Sign in / Sign up

Export Citation Format

Share Document