Early embryonic lethality in Bmp5;Bmp7 double mutant mice suggests functional redundancy within the 60A subgroup

Development ◽  
1999 ◽  
Vol 126 (8) ◽  
pp. 1753-1768 ◽  
Author(s):  
M.J. Solloway ◽  
E.J. Robertson

Members of the BMP family of signaling molecules display a high conservation of structure and function, and multiple BMPs are often coexpressed in a variety of tissues during development. Moreover, distinct BMP ligands are capable of activating common pathways. Here we describe the coexpression of two members of the 60A subfamily of BMPs, Bmp5 and Bmp7, at a number of different sites in the embryo from gastrulation onwards. Previous studies demonstrate that loss of either Bmp5 or Bmp7 has negligible effects on development, suggesting these molecules functionally compensate for each other at early stages of embryonic development. Here we show this is indeed the case. Thus we find that Bmp5;Bmp7 double mutants die at 10.5 dpc and display striking defects primarily affecting the tissues where these factors are coexpressed. The present analysis also uncovers novel roles for BMP signaling during the development of the allantois, heart, branchial arches, somites and forebrain. Bmp5 and Bmp7 do not appear to be involved in establishing pattern in these tissues, but are instead necessary for the proliferation and maintenance of specific cell populations. These findings are discussed with respect to potential mechanisms underlying cooperative signaling by multiple members of the TGF-beta superfamily.

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Kendall M. Hoover ◽  
Scott J. Gratz ◽  
Nova Qi ◽  
Kelsey A. Herrmann ◽  
Yizhou Liu ◽  
...  

AbstractSynapses are highly specialized for neurotransmitter signaling, yet activity-dependent growth factor release also plays critical roles at synapses. While efficient neurotransmitter signaling relies on precise apposition of release sites and neurotransmitter receptors, molecular mechanisms enabling high-fidelity growth factor signaling within the synaptic microenvironment remain obscure. Here we show that the auxiliary calcium channel subunit α2δ-3 promotes the function of an activity-dependent autocrine Bone Morphogenetic Protein (BMP) signaling pathway at the Drosophila neuromuscular junction (NMJ). α2δ proteins have conserved synaptogenic activity, although how they execute this function has remained elusive. We find that α2δ-3 provides an extracellular scaffold for an autocrine BMP signal, suggesting a mechanistic framework for understanding α2δ’s conserved role in synapse organization. We further establish a transcriptional requirement for activity-dependent, autocrine BMP signaling in determining synapse density, structure, and function. We propose that activity-dependent, autocrine signals provide neurons with continuous feedback on their activity state for modulating both synapse structure and function.


2016 ◽  
Vol 215 (4) ◽  
pp. 467-482 ◽  
Author(s):  
Jocelyn F. Krey ◽  
Evan S. Krystofiak ◽  
Rachel A. Dumont ◽  
Sarath Vijayakumar ◽  
Dongseok Choi ◽  
...  

With their essential role in inner ear function, stereocilia of sensory hair cells demonstrate the importance of cellular actin protrusions. Actin packing in stereocilia is mediated by cross-linkers of the plastin, fascin, and espin families. Although mice lacking espin (ESPN) have no vestibular or auditory function, we found that mice that either lacked plastin 1 (PLS1) or had nonfunctional fascin 2 (FSCN2) had reduced inner ear function, with double-mutant mice most strongly affected. Targeted mass spectrometry indicated that PLS1 was the most abundant cross-linker in vestibular stereocilia and the second most abundant protein overall; ESPN only accounted for ∼15% of the total cross-linkers in bundles. Mouse utricle stereocilia lacking PLS1 were shorter and thinner than wild-type stereocilia. Surprisingly, although wild-type stereocilia had random liquid packing of their actin filaments, stereocilia lacking PLS1 had orderly hexagonal packing. Although all three cross-linkers are required for stereocilia structure and function, PLS1 biases actin toward liquid packing, which allows stereocilia to grow to a greater diameter.


2020 ◽  
Author(s):  
Lindsey S. Marmont ◽  
Gregory B. Whitfield ◽  
Roland Pfoh ◽  
Rohan J. Williams ◽  
Trevor E. Randall ◽  
...  

ABSTRACTPel is an N-acetylgalactosamine rich polysaccharide that contributes to the structure and function of Pseudomonas aeruginosa biofilms. The pelABCDEFG operon is highly conserved among diverse bacterial species, and thus Pel may be a widespread biofilm determinant. Previous annotation of pel gene clusters led us to identify an additional gene, pelX, that is found adjacent to pelABCDEFG in over 100 different bacterial species. The pelX gene is predicted to encode a member of the short-chain dehydrogenase/reductase (SDR) superfamily of enzymes, but its potential role in Pel-dependent biofilm formation is unknown. Herein, we have used Pseudomonas protegens Pf-5 as a model to understand PelX function as P. aeruginosa lacks a pelX homologue in its pel gene cluster. We find that P. protegens forms Pel-dependent biofilms, however, despite expression of pelX under these conditions, biofilm formation was unaffected in a ΔpelX strain. This observation led to our identification of the pelX paralogue, PFL_5533, which we designate pgnE, that appears to be functionally redundant to pelX. In line with this, a ΔpelX ΔpgnE double mutant was substantially impaired in its ability to form Pel-dependent biofilms. To understand the molecular basis for this observation, we determined the structure of PelX to 2.1Å resolution. The structure revealed that PelX resembles UDP-N-acetylglucosamine (UDP-GlcNAc) C4-epimerases and, using 1H NMR analysis, we show that PelX catalyzes the epimerization between UDP-GlcNAc and UDP-GalNAc. Taken together, our results demonstrate that Pel-dependent biofilm formation requires a UDP-GlcNAc C4-epimerase that generates the UDP-GalNAc precursors required by the Pel synthase machinery for polymer production.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Jessica M Sidisky ◽  
Daniel Weaver ◽  
Sarrah Hussain ◽  
Meryem Okumus ◽  
Russell Caratenuto ◽  
...  

Maintaining synaptic structure and function over time is vital for overall nervous system function and survival. The processes that underly synaptic development are well understood. However, the mechanisms responsible for sustaining synapses throughout the lifespan of an organism are poorly understood. Here, we demonstrate that a previously uncharacterized gene, CG31475, regulates synaptic maintenance in adult Drosophila NMJs. We named CG31475 mayday due to the progressive loss of flight ability and synapse architecture with age. Mayday is functionally homologous to the human protein Cab45, which sorts secretory cargo from the Trans Golgi Network (TGN). We find that Mayday is required to maintain trans-synaptic BMP signaling at adult NMJs in order to sustain proper synaptic structure and function. Finally, we show that mutations in mayday result in the loss of both presynaptic motor neurons as well as postsynaptic muscles, highlighting the importance of maintaining synaptic integrity for cell viability.


2019 ◽  
Author(s):  
Kendall M. Hoover ◽  
Scott J. Gratz ◽  
Kelsey A. Herrmann ◽  
Nova Qi ◽  
Alexander Liu ◽  
...  

AbstractSynapses are highly specialized for neurotransmitter signaling, yet activity-dependent growth factor release also plays critical roles at synapses. While efficient neurotransmitter signaling is known to rely on precise apposition of release sites and neurotransmitter receptors, molecular mechanisms enabling high-fidelity growth factor signaling within the synaptic microenvironment remain obscure. Here we show that the auxiliary calcium channel subunit α2δ-3 promotes the function of a novel activity-dependent autocrine BMP signaling pathway at the Drosophila NMJ. α2δ proteins have conserved synaptogenic activity, although how they execute this function has remained elusive. We find that α2δ-3 provides an extracellular scaffold for autocrine BMP signaling, suggesting a new mechanistic framework for understanding α2δ’s conserved role in synapse organization. We further establish a transcriptional requirement for activity-dependent, autocrine BMP signaling in determining synapse density, structure, and function. We propose that activity-dependent, autocrine signals provide neurons with continuous feedback on their activity state and are thus well poised to modulate synapse structure and function.


1995 ◽  
Vol 270 (35) ◽  
pp. 20763-20774 ◽  
Author(s):  
Xuefeng Zhao ◽  
K. Vyas ◽  
Bao D. Nguyen ◽  
Krishnakumar Rajarathnam ◽  
Gerd N. La Mar ◽  
...  

Author(s):  
Peter Sterling

The synaptic connections in cat retina that link photoreceptors to ganglion cells have been analyzed quantitatively. Our approach has been to prepare serial, ultrathin sections and photograph en montage at low magnification (˜2000X) in the electron microscope. Six series, 100-300 sections long, have been prepared over the last decade. They derive from different cats but always from the same region of retina, about one degree from the center of the visual axis. The material has been analyzed by reconstructing adjacent neurons in each array and then identifying systematically the synaptic connections between arrays. Most reconstructions were done manually by tracing the outlines of processes in successive sections onto acetate sheets aligned on a cartoonist's jig. The tracings were then digitized, stacked by computer, and printed with the hidden lines removed. The results have provided rather than the usual one-dimensional account of pathways, a three-dimensional account of circuits. From this has emerged insight into the functional architecture.


Author(s):  
K.E. Krizan ◽  
J.E. Laffoon ◽  
M.J. Buckley

With increase use of tissue-integrated prostheses in recent years it is a goal to understand what is happening at the interface between haversion bone and bulk metal. This study uses electron microscopy (EM) techniques to establish parameters for osseointegration (structure and function between bone and nonload-carrying implants) in an animal model. In the past the interface has been evaluated extensively with light microscopy methods. Today researchers are using the EM for ultrastructural studies of the bone tissue and implant responses to an in vivo environment. Under general anesthesia nine adult mongrel dogs received three Brånemark (Nobelpharma) 3.75 × 7 mm titanium implants surgical placed in their left zygomatic arch. After a one year healing period the animals were injected with a routine bone marker (oxytetracycline), euthanized and perfused via aortic cannulation with 3% glutaraldehyde in 0.1M cacodylate buffer pH 7.2. Implants were retrieved en bloc, harvest radiographs made (Fig. 1), and routinely embedded in plastic. Tissue and implants were cut into 300 micron thick wafers, longitudinally to the implant with an Isomet saw and diamond wafering blade [Beuhler] until the center of the implant was reached.


Sign in / Sign up

Export Citation Format

Share Document