scholarly journals REF-1, a protein with two bHLH domains, alters the pattern of cell fusion in C. elegans by regulating Hox protein activity

Development ◽  
2001 ◽  
Vol 128 (10) ◽  
pp. 1793-1804 ◽  
Author(s):  
S. Alper ◽  
C. Kenyon

Hox genes control the choice of cell fates along the anteroposterior (AP) body axis of many organisms. In C. elegans, two Hox genes, lin-39 and mab-5, control the cell fusion decision of the 12 ventrally located Pn.p cells. Specific Pn.p cells fuse with an epidermal syncytium, hyp7, in a sexually dimorphic pattern. In hermaphrodites, Pn.p cells in the mid-body region remain unfused whereas in males, Pn.p cells adopt an alternating pattern of syncytial and unfused fates. The complexity of these fusion patterns arises because the activities of these two Hox proteins are regulated in a sex-specific manner. MAB-5 activity is inhibited in hermaphrodite Pn.p cells and thus MAB-5 normally only affects the male Pn.p fusion pattern. Here we identify a gene, ref-1, that regulates the hermaphrodite Pn.p cell fusion pattern largely by regulating MAB-5 activity in these cells. Mutation of ref-1 also affects the fate of other epidermal cells in distinct AP body regions. ref-1 encodes a protein with two basic helix-loop-helix domains distantly related to those of the hairy/Enhancer of split family. ref-1, and another hairy homolog, lin-22, regulate similar cell fate decisions in different body regions along the C. elegans AP body axis.

Development ◽  
1995 ◽  
Vol 121 (11) ◽  
pp. 3615-3626 ◽  
Author(s):  
K.L. Chow ◽  
D.H. Hall ◽  
S.W. Emmons

The gene mab-21, which encodes a novel protein of 386 amino acids, is required for the choice of alternate cell fates by several cells in the C. elegans male tail. Three cells descended from the ray 6 precursor cell adopt fates of anterior homologs, and a fourth, lineally unrelated hypodermal cell is transformed into a neuroblast. The affected cells lie together in the lateral tail epidermis, suggesting that mab-21 acts as part of a short-range pattern-formation mechanism. Each of the changes in cell fate brought about by mab-21 mutants can be interpreted as a posterior-to-anterior homeotic transformation. mab-21 mutant males and hermaphrodites have additional pleiotropic phenotypes affecting movement, body shape and fecundity, indicating that mab-21 has functions outside the tail region of males. We show that the three known alleles of mab-21 are hypomorphs of a new gene. Mosaic analysis revealed that mab-21 acts cell autonomously to specify the properties of the sensory ray, but non-autonomously in the hypodermal versus neuroblast cell fate choice. Presence of cell signalling in the choice of the neuroblast fate was confirmed by cell ablation experiments. Mutations in mab-21 were shown previously to be genetic modifiers of the effects of HOM-C/Hox gene mutations on ray identity specification. The results presented here support the conclusion that mab-21 acts as part of a mechanism required for correct cell fate choice, possibly involving the function of HOM-C/Hox genes in several body regions.


Development ◽  
1997 ◽  
Vol 124 (15) ◽  
pp. 2875-2888 ◽  
Author(s):  
L.A. Wrischnik ◽  
C.J. Kenyon

In C. elegans, six lateral epidermal stem cells, the seam cells V1-V6, are located in a row along the anterior-posterior (A/P) body axis. Anterior seam cells (V1-V4) undergo a fairly simple sequence of stem cell divisions and generate only epidermal cells. Posterior seam cells (V5 and V6) undergo a more complicated sequence of cell divisions that include additional rounds of stem cell proliferation and the production of neural as well as epidermal cells. In the wild type, activity of the gene lin-22 allows V1-V4 to generate their normal epidermal lineages rather than V5-like lineages. lin-22 activity is also required to prevent additional neurons from being produced by one branch of the V5 lineage. We find that the lin-22 gene exhibits homology to the Drosophila gene hairy, and that lin-22 activity represses neural development within the V5 lineage by blocking expression of the posterior-specific Hox gene mab-5 in specific cells. In addition, in order to prevent anterior V cells from generating V5-like lineages, wild-type lin-22 gene activity must inhibit (directly or indirectly) at least five downstream regulatory gene activities. In anterior body regions, lin-22(+) inhibits expression of the Hox gene mab-5. It also inhibits the activity of the achaete-scute homolog lin-32 and an unidentified gene that we postulate regulates stem cell division. Each of these three genes is required for the expression of a different piece of the ectopic V5-like lineages generated in lin-22 mutants. In addition, lin-22 activity prevents two other Hox genes, lin-39 and egl-5, from acquiring new activities within their normal domains of function along the A/P body axis. Some, but not all, of the patterning activities of lin-22 in C. elegans resemble those of hairy in Drosophila.


2015 ◽  
Vol 5 (3) ◽  
pp. 353-359 ◽  
Author(s):  
Yunting Chen ◽  
Iva Greenwald

Abstract Notch is a receptor that mediates cell–cell interactions that specify binary cell fate decisions in development and tissue homeostasis. Inappropriate Notch signaling is associated with cancer, and mutations in Notch pathway components have been associated with developmental diseases and syndromes. In Caenorhabditis elegans, suppressors of phenotypes associated with constitutively active LIN-12/Notch have identified many conserved core components and direct or indirect modulators. Here, we molecularly identify sel(ar584), originally isolated as a suppressor of a constitutively active allele of lin-12. We show that sel(ar584) is an allele of hecd-1, the ortholog of human HECDT1, a ubiquitin ligase that has been implicated in several different mammalian developmental events. We studied interactions of hecd-1 with lin-12 in the somatic gonad and with the other C. elegans Notch gene, glp-1, in the germ line. We found that hecd-1 acts as a positive modulator of lin-12/Notch activity in a somatic gonad context—the original basis for its isolation—but acts autonomously as a negative modulator of glp-1/Notch activity in the germ line. As the yeast ortholog of HECD-1, Ufd4p, has been shown to function in quality control, and C. elegans  HECD-1 has been shown to affect mitochondrial maintenance, we propose that the different genetic interactions between hecd-1 and Notch genes we observed in different cell contexts may reflect differences in quality control regulatory mechanisms or in cellular metabolism.


2022 ◽  
Author(s):  
Kimberly N. Bekas ◽  
Bryan T. Phillips

Asymmetric cell division (ACD) is a fundamental mechanism of developmental cell fate specification and adult tissue homeostasis. In C. elegans, the Wnt/beta-catenin asymmetry (WβA) pathway regulates ACDs throughout embryonic and larval development. Under control of Wnt ligand-induced polarity, the transcription factor TCF/POP-1 functions with the coactivator beta-catenin/SYS-1 to activate gene expression in the signaled cell or, in absence of the coactivator, to repress Wnt target genes in the nascent unsignaled daughter cell. To date, a broad investigation of Groucho function in WβA is lacking and the function of the short Groucho AES homolog, lsy-22 has only been evaluated in C. elegans neuronal cell fate decisions. Further, there is conflicting evidence showing TCF utilizing Groucho-mediated repression may be either aided or repressed by addition of AES subfamily of Groucho proteins. Here we demonstrate a genetic interaction between Groucho repressors and TCF/POP-1 in ACDs in the somatic gonad, the seam hypodermal stem cell lineage and the early embryo. Specifically, in the somatic gonad lineage, the signaled cell fate increases after individual and double Groucho loss of function, representing the first demonstration of Groucho function in wild-type WβA ACD. Further, WβA target gene misexpression occurs at a higher rate than DTC fate changes, suggesting derepression generates an intermediate cell fate. In seam cell ACD, loss of Groucho unc-37 or Groucho-like lsy-22 in a pop-1(RNAi) hypomorphic background enhances a pop-1 seam cell expansion and target gene misregulation. Moreover, while POP-1 depletion in lsy-22 null mutants yielded an expected increase in seam cells we observed a surprising seam cell decrease in the unc-37 null subjected to POP-1 depletion. This phenotype may be due to UNC-37 regulation of pop-1 expression in this tissue since we find misregulation of POP-1 in unc-37 mutants. Lastly, Groucho functions in embryonic endoderm development since we observe ectopic endoderm target gene expression in lsy-22(ot244) heterozygotes and unc-37(tm4649) heterozygotes subjected to intermediate levels of hda-1(RNAi). Together, these data indicate Groucho repressor modulation of cell fate via regulation of POP-1/TCF repression is widespread in asymmetric cell fate decisions and suggests a novel role of LSY-22 as a bona fide TCF repressor. As AES Grouchos are well-conserved, our model of combinatorial TCF repression by both Gro/TLE and AES warrants further investigation. 


2018 ◽  
Author(s):  
Jason R. Kroll ◽  
Jasonas Tsiaxiras ◽  
Jeroen S. van Zon

AbstractDuring development, cell fate decisions are often highly stochastic, but with the frequency of the different possible fates tightly controlled. To understand how signaling networks control the cell fate frequency of such random decisions, we studied the stochastic decision of the Caenorhabditis elegans P3.p cell to either fuse to the hypodermis or assume vulva precursor cell fate. Using time-lapse microscopy to measure the single-cell dynamics of two key inhibitors of cell fusion, the Hox gene LIN-39 and Wnt signaling through the β-catenin BAR-1, we uncovered significant variability in the dynamics of LIN-39 and BAR-1 levels. Most strikingly, we observed that BAR-1 accumulated in a single, 1-4 hour pulse at the time of the P3.p cell fate decision, with strong variability both in pulse slope and time of pulse onset. We found that the time of BAR-1 pulse onset was delayed relative to the time of cell fusion in mutants with low cell fusion frequency, linking BAR-1 pulse timing to cell fate outcome. Overall, a model emerged where animal-to-animal variability in LIN-39 levels and BAR-1 pulse dynamics biases cell fate by modulating their absolute level at the time cell fusion is induced. Our results highlight that timing of cell signaling dynamics, rather than its average level or amplitude, could play an instructive role in determining cell fate.Article summaryWe studied the stochastic decision of the Caenorhabditis elegans P3.p cell to either fuse to the hypodermis or assume vulva precursor cell fate. We uncovered significant variability in the dynamics of LIN-39/Hox and BAR-1/β-catenin levels, two key inhibitors of cell fusion. Surprisingly, we observed that BAR-1 accumulated in a 1-4 hour pulse at the time of the P3.p cell fate decision, with variable pulse slope and time of pulse onset. Our work suggests a model where animal-to-animal variability in LIN-39 levels and BAR-1 pulse dynamics biases cell fate by modulating their absolute level at the time cell fusion is induced.


Development ◽  
2002 ◽  
Vol 129 (14) ◽  
pp. 3335-3348 ◽  
Author(s):  
Scott Alper ◽  
Cynthia Kenyon

During larval development in C. elegans, some of the cells of the ventral epidermis, the Pn.p cells, fuse with the growing epidermal syncytium hyp7. The pattern of these cell fusions is regulated in a complex, sexually dimorphic manner. It is essential that some Pn.p cells remain unfused in order for some sex-specific mating structures to be generated. The pattern of Pn.p cell fusion is regulated combinatorially by two genes of the C. elegans Hox gene cluster: lin-39 and mab-5. Some of the complexity in the Pn.p cell fusion pattern arises because these two Hox proteins can regulate each other’s activities. We describe a zinc-finger transcription factor, REF-2, that is required for the Pn.p cells to be generated and to remain unfused. REF-2 functions with the Hox proteins to prevent Pn.p cell fusion. ref-2 may also be a transcriptional target of the Hox proteins.


Development ◽  
1999 ◽  
Vol 126 (15) ◽  
pp. 3303-3312 ◽  
Author(s):  
Q. Ch'ng ◽  
C. Kenyon

Hox genes pattern the fates of the ventral ectodermal Pn.p cells that lie along the anteroposterior (A/P) body axis of C. elegans. In these cells, the Hox genes are expressed in sequential overlapping domains where they control the ability of each Pn.p cell to fuse with the surrounding syncytial epidermis. The activities of Hox proteins are sex-specific in this tissue, resulting in sex-specific patterns of cell fusion: in hermaphrodites, the mid-body cells remain unfused, whereas in males, alternating domains of syncytial and unfused cells develop. We have found that the gene egl-27, which encodes a C. elegans homologue of a chromatin regulatory factor, specifies these patterns by regulating both Hox gene expression and Hox protein function. In egl-27 mutants, the expression domains of Hox genes in these cells are shifted posteriorly, suggesting that egl-27 influences A/P positional information. In addition, egl-27 controls Hox protein function in the Pn.p cells in two ways: in hermaphrodites it inhibits MAB-5 activity, whereas in males it permits a combinatorial interaction between LIN-39 and MAB-5. Thus, by selectively modifying the activities of Hox proteins, egl-27 elaborates a simple Hox expression pattern into complex patterns of cell fates. Taken together, these results implicate egl-27 in the diversification of cell fates along the A/P axis and suggest that chromatin reorganization is necessary for controlling Hox gene expression and Hox protein function.


Development ◽  
1997 ◽  
Vol 124 (21) ◽  
pp. 4193-4200 ◽  
Author(s):  
C. Wittmann ◽  
O. Bossinger ◽  
B. Goldstein ◽  
M. Fleischmann ◽  
R. Kohler ◽  
...  

Clusters of homeobox-containing HOM-C/hox genes determine the morphology of animal body plans and body parts and are thought to mediate positional information. Here, we describe the onset of embryonic expression of ceh-13, the Caenorhabditis elegans orthologue of the Drosophila labial gene, which is the earliest gene of the C. elegans Hox gene cluster to be activated in C. elegans development. At the beginning of gastrulation, ceh-13 is asymmetrically expressed in posterior daughters of anteroposterior divisions, first in the posterior daughter of the intestinal precursor cell E and then in all posterior daughters of the AB descendants ABxxx. In this paper, we present evidence that supports position-independent activation of ceh-13 during early C. elegans embryogenesis, which integrates cell fate determinants and cell polarity cues. Our findings imply that mechanisms other than cell-extrinsic anteroposterior positional signals play an important role in the activation and regulation of the C. elegans Hox gene ceh-13.


Development ◽  
1995 ◽  
Vol 121 (12) ◽  
pp. 4275-4282 ◽  
Author(s):  
K. Fitzgerald ◽  
I. Greenwald

Ligands of the Delta/Serrate/lag-2 (DSL) family and their receptors, members of the lin-12/Notch family, mediate cell-cell interactions that specify cell fate in invertebrates and vertebrates. In C. elegans, two DSL genes, lag-2 and apx-1, influence different cell fate decisions during development. Here we show that APX-1 can fully substitute for LAG-2 when expressed under the control of lag-2 regulatory sequences. In addition, we demonstrate that truncated forms lacking the transmembrane and intracellular domains of both LAG-2 and APX-1 can also substitute for endogenous lag-2 activity. Moreover, we provide evidence that these truncated forms are secreted and able to activate LIN-12 and GLP-1 ectopically. Finally, we show that expression of a secreted DSL domain alone may enhance endogenous LAG-2 signalling. Our data suggest ways that activated forms of DSL ligands in other systems may be created.


Sign in / Sign up

Export Citation Format

Share Document