Heparan sulphate proteoglycans and spinal neurulation in the mouse embryo

Development ◽  
2002 ◽  
Vol 129 (9) ◽  
pp. 2109-2119 ◽  
Author(s):  
George W. Yip ◽  
Patrizia Ferretti ◽  
Andrew J. Copp

Heparan sulphate proteoglycans have been implicated in the binding and presentation of several growth factors to their receptors, thereby regulating cellular growth and differentiation. To investigate the role of heparan sulphate proteoglycans in mouse spinal neurulation, we administered chlorate, a competitive inhibitor of glycosaminoglycan sulphation, to cultured E8.5 embryos. Treated embryos exhibit accelerated posterior neuropore closure, accompanied by suppression of neuroepithelial bending at the median hinge point and accentuated bending at the paired dorsolateral hinge points of the posterior neuropore. These effects appear specific, as they can be prevented by addition of heparan sulphate to the culture medium, whereas heparitinase-treated heparan sulphate and chondroitin sulphate are ineffective. Both N- and O-sulphate groups appear to be necessary for the action of heparan sulphate. In situ hybridisation analysis demonstrates a normal distribution of sonic hedgehog mRNA in chlorate-treated embryos. By contrast, patched 1 transcripts are abnormally abundant in the notochord, and diminished in the overlying neuroepithelium, suggesting that sonic hedgehog signalling from the notochord may be perturbed by inhibition of heparan sulphation. Together, these results demonstrate a regulatory role for heparan sulphate in mouse spinal neurulation.

Author(s):  
Marissa L. Maciej-Hulme ◽  
Eamon Dubaissi ◽  
Chun Shao ◽  
Joseph Zaia ◽  
Enrique Amaya ◽  
...  

The glycosaminoglycan, heparan sulphate (HS), orchestrates many developmental processes. Yet its biological role has not yet fully been elucidated. Small molecule chemical inhibitors can be used to perturb HS function and these compounds pro-vide cheap alternatives to genetic manipulation methods. However, existing chemical inhibition methods for HS also interfere with chondroitin sulphate (CS), complicating data interpretation of HS function. Herein, a simple method for the selective inhibition of HS biosynthesis is described. Using endogenous metabolic sugar pathways, Ac4GalNAz produces UDP-GlcNAz, which can target HS synthesis. Cell treatment with Ac4GalNAz resulted in defective chain elongation of the polymer and decreased HS expression. Conversely, no adverse effect on CS production was observed. The inhibition was transient and dose-dependent, affording rescue of HS expression after removal of the unnatural azido sugar. The utility of inhibition is demonstrated in cell culture and in whole or-ganisms, demonstrating that this small molecule can be used as a tool for HS inhibition in biological systems.


1999 ◽  
Vol 338 (2) ◽  
pp. 317-323 ◽  
Author(s):  
Mattias BELTING ◽  
Susanne PERSSON ◽  
Lars-Åke FRANSSON

We have evaluated the possible role of proteoglycans in the uptake of spermine by human lung fibroblasts. Exogenous glycosaminoglycans behaved as competitive inhibitors of spermine uptake, the most efficient being heparan sulphate (Ki = 0.16±0.04 µM). Treatment of fibroblasts with either heparan sulphate lyase, p-nitrophenyl-O-β-d-xylopyranoside or chlorate reduced spermine uptake considerably, whereas chondroitin sulphate lyase had a limited effect. Inhibition of polyamine biosynthesis with α-difluoromethylornithine resulted in an increase of cell-associated heparan sulphate proteoglycans exhibiting higher affinity for spermine. The data indicate a specific role for heparan sulphate proteoglycans in the uptake of spermine by fibroblasts. Spermine uptake by pgsD-677, a mutant Chinese hamster ovary cell defective in heparan sulphate biosynthesis, was only moderately reduced (20%) compared with wild-type cells. Treatment of mutant cells with the above-mentioned xyloside resulted in a greater reduction of endogenous proteoglycan production as well as a higher inhibition of spermine uptake than in wild-type cells. Moreover, treatment with chondroitin sulphate lyase resulted in a selective inhibition of uptake in mutant cells, indicating a role for chondroitin/dermatan sulphate proteoglycans in the uptake of spermine by these cells. Fibroblasts, made growth-dependent on exogenous spermine by α-difluoromethylornithine treatment, were growth-inhibited by heparan sulphate or β-d-xyloside, which might have future therapeutical implications.


2021 ◽  
Vol 22 (13) ◽  
pp. 6988
Author(s):  
Marissa L. Maciej-Hulme ◽  
Eamon Dubaissi ◽  
Chun Shao ◽  
Joseph Zaia ◽  
Enrique Amaya ◽  
...  

The glycosaminoglycan, heparan sulphate (HS), orchestrates many developmental processes. Yet its biological role has not yet fully been elucidated. Small molecule chemical inhibitors can be used to perturb HS function and these compounds provide cheap alternatives to genetic manipulation methods. However, existing chemical inhibition methods for HS also interfere with chondroitin sulphate (CS), complicating data interpretation of HS function. Herein, a simple method for the selective inhibition of HS biosynthesis is described. Using endogenous metabolic sugar pathways, Ac4GalNAz produces UDP-GlcNAz, which can target HS synthesis. Cell treatment with Ac4GalNAz resulted in defective chain elongation of the polymer and decreased HS expression. Conversely, no adverse effect on CS production was observed. The inhibition was transient and dose-dependent, affording rescue of HS expression after removal of the unnatural azido sugar. The utility of inhibition is demonstrated in cell culture and in whole organisms, demonstrating that this small molecule can be used as a tool for HS inhibition in biological systems.


2021 ◽  
Vol 22 (9) ◽  
pp. 4415
Author(s):  
Anthony J. Hayes ◽  
James Melrose

The recent discovery of nuclear and perinuclear perlecan in annulus fibrosus and nucleus pulposus cells and its known matrix stabilizing properties in tissues introduces the possibility that perlecan may also have intracellular stabilizing or regulatory roles through interactions with nuclear envelope or cytoskeletal proteins or roles in nucleosomal-chromatin organization that may regulate transcriptional factors and modulate gene expression. The nucleus is a mechano-sensor organelle, and sophisticated dynamic mechanoresponsive cytoskeletal and nuclear envelope components support and protect the nucleus, allowing it to perceive and respond to mechano-stimulation. This review speculates on the potential roles of perlecan in the nucleus based on what is already known about nuclear heparan sulphate proteoglycans. Perlecan is frequently found in the nuclei of tumour cells; however, its specific role in these diseased tissues is largely unknown. The aim of this review is to highlight probable roles for this intriguing interactive regulatory proteoglycan in the nucleus of normal and malignant cell types.


2003 ◽  
Vol 2 (8) ◽  
pp. 482-492 ◽  
Author(s):  
Jack van Horssen ◽  
Pieter Wesseling ◽  
Lambert PWJ van den Heuvel ◽  
Robert MW de Waal ◽  
Marcel M Verbeek

1987 ◽  
Vol 245 (2) ◽  
pp. 543-550 ◽  
Author(s):  
D H Farrell ◽  
D D Cunningham

Protease nexin-1 (PN-1) is a proteinase inhibitor that is secreted by human fibroblasts in culture. PN-1 inhibits certain regulatory serine proteinases by forming a covalent complex with the catalytic-site serine residue; the complex then binds to the cell surface and is internalized and degraded. The fibroblast surface was recently shown to accelerate the rate of complex-formation between PN-1 and thrombin. The present paper demonstrates that the accelerative activity is primarily due to cell-surface heparan sulphate, with a much smaller contribution from chondroitin sulphate. This conclusion is supported by the effects of purified glycosaminoglycans on the second-order rate constant for the inhibition of thrombin by PN-1. Also, treatment of 35SO4(2-)-labelled cells with heparitin sulphate lyase or chondroitin sulphate ABC lyase demonstrated two discrete pools of 35S-labelled glycosaminoglycans; subsequent treatment of plasma membranes with these glycosidases showed that heparitin sulphate lyase treatment abolished about 80% of the accelerative activity and chondroitin sulphate ABC lyase removed the remaining 20%. These results show that two components are responsible for the acceleration of PN-1-thrombin complex-formation by human fibroblasts. Although dermatan sulphate is also present on fibroblasts, it did not accelerate the inhibition of thrombin by PN-1.


Development ◽  
1980 ◽  
Vol 56 (1) ◽  
pp. 169-178
Author(s):  
Ch. Vanroelen ◽  
L. Vakaet ◽  
L. Andries

Acid mucopolysaccharides in the extracellular compartment of early chick blastoderms (16 h of incubation) were labelled with tritiated glucosamine and/or ]35S]sulphate. The incorporation pattern was studied autoradiographically. Treatment with testicular hyaluronidase revealed a testicular hyaluronidase-sensitive fraction, mainly at the periphery of Middle Layer and Deep Layer cells, and a testicular hyaluronidase-resistant fraction, mainly at the ventral side of the Upper Layer. A biochemical analysis, utilizing chondroitinase ABC and nitrous acid, followed by cellulose acetate electrophoresis, demonstrated the synthesis of a non-sulphated fraction, i.e. hyaluronic acid and/or chondroitin, and a sulphated fraction, comprising two undersulphated components, i.e. chondroitin sulphate, and heparan sulphate or heparin. The appearance of different AMPS in specific areas of the early chick blastoderm is regarded as an early specialization of the extracellular compartment.


Development ◽  
1987 ◽  
Vol 99 (4) ◽  
pp. 509-519
Author(s):  
K.S. O'Shea

The distribution of basement membrane and extracellular matrix components laminin, fibronectin, type IV collagen and heparan sulphate proteoglycan was examined during posterior neuropore closure and secondary neurulation in the mouse embryo. During posterior neuropore closure, these components were densely deposited in basement membranes of neuroepithelium, blood vessels, gut and notochord; although deposition was sparse in the midline of the regressing primitive streak. During secondary neurulation, mesenchymal cells formed an initial aggregate near the dorsal surface, which canalized and merged with the anterior neuroepithelium. With aggregation, fibronectin and heparan sulphate proteoglycan were first detected at the base of a 3- to 4-layer zone of radially organized cells. With formation of a lumen within the aggregate, laminin and type IV collagen were also deposited in the forming basement membrane. During both posterior neuropore closure and secondary neurulation, fibronectin and heparan sulphate proteoglycan were associated with the most caudal portion of the neuroepithelium, the region where newly formed epithelium merges with the consolidated neuroepithelium. In regions of neural crest migration, the deposition of basement membrane components was altered, lacking laminin and type IV collagen, with increased deposition of fibronectin and heparan sulphate proteoglycan.


Sign in / Sign up

Export Citation Format

Share Document