scholarly journals The impact of transposable elements on mammalian development

Development ◽  
2016 ◽  
Vol 143 (22) ◽  
pp. 4101-4114 ◽  
Author(s):  
Jose L. Garcia-Perez ◽  
Thomas J. Widmann ◽  
Ian R. Adams
2019 ◽  
Author(s):  
Michelle C. Stitzer ◽  
Sarah N. Anderson ◽  
Nathan M. Springer ◽  
Jeffrey Ross-Ibarra

Transposable elements (TEs) constitute the majority of flowering plant DNA, reflecting their tremendous success in subverting, avoiding, and surviving the defenses of their host genomes to ensure their selfish replication. More than 85% of the sequence of the maize genome can be ascribed to past transposition, providing a major contribution to the structure of the genome. Evidence from individual loci has informed our understanding of how transposition has shaped the genome, and a number of individual TE insertions have been causally linked to dramatic phenotypic changes. But genome-wide analyses in maize and other taxa have frequently represented TEs as a relatively homogeneous class of fragmentary relics of past transposition, obscuring their evolutionary history and interaction with their host genome. Using an updated annotation of structurally intact TEs in the maize reference genome, we investigate the family-level ecological and evolutionary dynamics of TEs in maize. Integrating a variety of data, from descriptors of individual TEs like coding capacity, expression, and methylation, as well as similar features of the sequence they inserted into, we model the relationship between these attributes of the genomic environment and the survival of TE copies and families. Our analyses reveal a diversity of ecological strategies of TE families, each representing the evolution of a distinct ecological niche allowing survival of the TE family. In contrast to the wholesale relegation of all TEs to a single category of junk DNA, these differences generate a rich ecology of the genome, suggesting families of TEs that coexist in time and space compete and cooperate with each other. We conclude that while the impact of transposition is highly family- and context-dependent, a family-level understanding of the ecology of TEs in the genome can refine our ability to predict the role of TEs in generating genetic and phenotypic diversity.‘Lumping our beautiful collection of transposons into a single category is a crime’-Michael R. Freeling, Mar. 10, 2017


1999 ◽  
Vol 266 (1429) ◽  
pp. 1677-1683 ◽  
Author(s):  
P. T. J. Emery ◽  
T. E. Robinson ◽  
R. Duddington ◽  
J. F. Y. Brookfield

Author(s):  
Marisol Domínguez ◽  
Elise Dugas ◽  
Médine Benchouaia ◽  
Basile Leduque ◽  
José Jimenez-Gomez ◽  
...  

ABSTRACTTomatoes come in a multitude of shapes and flavors despite a narrow genetic pool. Here, we leveraged whole-genome resequencing data available for 602 cultivated and wild accessions to determine the contribution of transposable elements (TEs) to tomato diversity. We identified 6,906 TE insertions polymorphisms (TIPs), which result from the mobilization of 337 distinct TE families. Most TIPs are low frequency variants and disproportionately located within or adjacent to genes involved in environmental response. In addition, we show that genic TE insertions tend to have strong transcriptional effects and can notably lead to the generation of multiple transcript isoforms. We also uncovered through genome-wide association studies (GWAS) ~180 TIPs associated with extreme variations in major agronomic traits or secondary metabolites. Importantly, these TIPs tend to affect loci that are distinct from those tagged by SNPs. Collectively, our findings suggest a unique and important role for TE mobilization in tomato diversification, with important implications for future breeding.


2021 ◽  
Author(s):  
Francesco Dal Grande ◽  
Veronique Jamilloux ◽  
Nathalie Choisne ◽  
Anjuli Calchera ◽  
Malte Petersen ◽  
...  

Background: Transposable elements (TEs) are an important source of genome plasticity across the tree of life. Accumulating evidence suggests that TEs may not be randomly distributed in the genome. Drift and natural selection are important forces shaping TE distribution and accumulation, acting directly on the TE element or indirectly on the host species. Fungi, with their multifaceted phenotypic diversity and relatively small genome size, are ideal models to study the role of TEs in genome evolution and their impact on the host's ecological and life history traits. Here we present an account of all TEs found in a high-quality reference genome of the lichen-forming fungus Umbilicaria pustulata, a macrolichen species comprising two climatic ecotypes: Mediterranean and cold-temperate. We trace the occurrence of the newly identified TEs in populations along three replicated elevation gradients using a Pool-Seq approach, to identify TE insertions of potential adaptive significance. Results: We found that TEs cover 21.26 % of the 32.9 Mbp genome, with LTR Gypsy and Copia clades being the most common TEs. Out of a total of 182 TE copies we identified 28 insertions displaying consistent insertion frequency differences between the two host ecotypes across the elevation gradients. Most of the highly differentiated insertions were located near genes, indicating a putative function. Conclusions: This pioneering study into the content and climate niche-specific distribution of TEs in a lichen-forming fungus contributes to understanding the roles of TEs in fungal evolution. Particularly, it may serve as a foundation for assessing the impact of TE dynamics on fungal adaptation to the abiotic environment, and the impact of TE activity on the evolution and maintenance of a symbiotic lifestyle.


2020 ◽  
Author(s):  
Markus Frederik Schliffka ◽  
Anna-Francesca Tortorelli ◽  
Özge Özgüç ◽  
Ludmilla de Plater ◽  
Oliver Polzer ◽  
...  

AbstractDuring the first days of mammalian development, the embryo forms the blastocyst, the structure responsible for implanting the mammalian embryo. Consisting of an epithelium enveloping the pluripotent inner cell mass and a fluid-filled lumen, the blastocyst results from a series of cleavages divisions, morphogenetic movements and lineage specification. Recent studies identified the essential role of actomyosin contractility in driving the morphogenesis, fate specification and cytokinesis leading to the formation of the blastocyst. However, the preimplantation development of contractility mutants has not been characterized. Here, we generated single and double maternal-zygotic mutants of non-muscle myosin-II heavy chains (NMHC) to characterize them using multiscale imaging. We find that Myh9 (NMHC II-A) is the major NMHC during preimplantation development as its maternal-zygotic loss causes failed cytokinesis, increased duration of the cell cycle, weaker embryo compaction and reduced differentiation, whereas Myh10 (NMHC II-B) maternal-zygotic loss is much less severe. Double maternal-zygotic mutants for Myh9 and Myh10 show a much stronger phenotype, failing most attempts of cytokinesis. We find that morphogenesis and fate specification are affected but nevertheless carry on in a timely fashion, regardless of the impact of the mutations on cell number. Strikingly, even when all cell divisions fail, the resulting single-celled embryo can initiate trophectoderm differentiation and lumen formation by accumulating fluid in increasingly large vacuoles. Therefore, contractility mutants reveal that fluid accumulation is a cell-autonomous process and that the preimplantation program carries on independently of successful cell division.


2021 ◽  
Author(s):  
Nikolaos Lykoskoufis ◽  
Evarist Planet ◽  
Halit Ongen ◽  
Didier Trono ◽  
Emmanouil T Dermitzakis

Abstract Transposable elements (TEs) are interspersed repeats that contribute to more than half of the human genome, and TE-embedded regulatory sequences are increasingly recognized as major components of the human regulome. Perturbations of this system can contribute to tumorigenesis, but the impact of TEs on gene expression in cancer cells remains to be fully assessed. Here, we analyzed 275 normal colon and 276 colorectal cancer (CRC) samples from the SYSCOL colorectal cancer cohort and discovered 10,111 and 5,152 TE expression quantitative trait loci (eQTLs) in normal and tumor tissues, respectively. Amongst the latter, 376 were exclusive to CRC, likely driven by changes in methylation patterns. We identified that transcription factors are more enriched in tumor-specific TE-eQTLs than shared TE-eQTLs, indicating that TEs are more specifically regulated in tumor than normal. Using Bayesian Networks to assess the causal relationship between eQTL variants, TEs and genes, we identified that 1,758 TEs are mediators of genetic effect, altering the expression of 1,626 nearby genes significantly more in tumor compared to normal, of which 51 are cancer driver genes. We show that tumor-specific TE-eQTLs trigger the driver capability of TEs subsequently impacting expression of nearby genes. Collectively, our results highlight a global profile of a new class of cancer drivers, thereby enhancing our understanding of tumorigenesis and providing potential new candidate mechanisms for therapeutic target development.


Author(s):  
Allice R. Ferreira Nochi ◽  
Luna N. Vargas ◽  
Roberto Sartori ◽  
Roberto G. Júnior ◽  
Davi B. Araújo ◽  
...  

Abstract Maternal nutrition is critical in mammalian development, influencing the epigenetic reprogramming of gametes, embryos, and fetal programming. We evaluated the effects of different levels of sulfur (S) and cobalt (Co) in the maternal diet throughout the pre- and periconceptional periods on the biochemical and reproductive parameters of the donors and the DNA methylome of the progeny in Bos indicus cattle. The low-S/Co group differed from the control with respect to homocysteine, folic acid, B12, insulin growth factor 1, and glucose. The oocyte yield was lower in heifers from the low S/Co group than that in the control heifers. Embryos from the low-S/Co group exhibited 2320 differentially methylated regions (DMRs) across the genome compared with the control embryos. We also characterized candidate DMRs linked to the DNMT1 and DNMT3B genes in the blood and sperm cells of the adult progeny. A DMR located in DNMT1 that was identified in embryos remained differentially methylated in the sperm of the progeny from the low-S/Co group. Therefore, we associated changes in specific compounds in the maternal diet with DNA methylation modifications in the progeny. Our results help to elucidate the impact of maternal nutrition on epigenetic reprogramming in livestock, opening new avenues of research to study the effect of disturbed epigenetic patterns in early life on health and fertility in adulthood. Considering that cattle are physiologically similar to humans with respect to gestational length, our study may serve as a model for studies related to the developmental origin of health and disease in humans.


Sign in / Sign up

Export Citation Format

Share Document