Properties of extra-embryonic ectoderm isolated from postimplantation mouse embryos

Development ◽  
1977 ◽  
Vol 39 (1) ◽  
pp. 183-194
Author(s):  
J. Rossant ◽  
L. Ofer

Extra-embryonic ectoderm isolated from the mouse embryo as late as 8½ days post coitum can form cells with the morphological characteristics of trophoblast giant cells both in ectopic sites and in vitro. This similarity to the properties of ectoplacental cone tissue provides further support for the postulated common origin of both tissues from the trophectoderm of the blastocyst.

Development ◽  
1981 ◽  
Vol 61 (1) ◽  
pp. 103-116
Author(s):  
M. H. Johnson ◽  
J. Rossant

Embryonic ectoderm (EmE), extraembryonic ectoderm (EE), ectoplacental cone diploid cells (EPC) and secondary giant cells (GC) were isolated from 7½-day mouse embryos and their polypeptide synthetic profile assessed by fluorography of 2D polyacrylamide gels. Fifty polypeptides showed different distributions amongst the tissues, permitting characterization of each tissue by an array of polypeptide marken; typical for the tissue at that developmental stage. The three tissues on the presumptive trophectoderm lineage did not show identical synthetic patterns. However, culture of EE cells in vitro resulted in conversion of their polypeptide synthetic profile to that of EPC after 2 days and of GC after 6 days, whilst culture of EPC cells converted their polypeptide synthetic profile to that of GC after only 4 days. These changes in polypeptide synthesis correlated well with the ploidy levels of the tissues at different times in culture.


Development ◽  
1981 ◽  
Vol 66 (1) ◽  
pp. 43-55
Author(s):  
J. Rossant ◽  
K. M. Vijh

Embryos homozygous for the velvet coat mutation, Ve/Ve, were recognized at 6·5 days post coitum by the reduced size of the ectodermal portions of the egg cylinder and the loose, columnar nature of the overlying endoderm. Later in development ectoderm tissues were sometimes entirely absent. Abnormalities appeared in the ectoplacental cone at 8·5 days but trophoblast giant cells and parietal endoderm appeared unaffected. Homozygotes could not be unequivocally identified at 5·5 days nor at the blastocyst stage but were recognized in blastocyst outgrowths by poor development of the inner cell mass derivatives, It has previously been suggested that Ve may exert its action at the blastocyst stage by reducing the size of the inner cell mass, but no evidence for such a reduction was found. Most of the observations on Ve/Ve homozygotes are, however, consistent with the hypothesis that Ve exerts its action primarily on later primitive ectoderm development.


Development ◽  
1981 ◽  
Vol 61 (1) ◽  
pp. 277-287
Author(s):  
A. J. Copp

The number of trophoblast giant cells in outgrowths of mouse blastocysts was determined before, during and after egg-cylinder formation in vitro. Giant-cell numbers rose initially but reached a plateau 12 h before the egg cylinder appeared. A secondary increase began 24 h after egg-cylinder formation. Blastocysts whose mural trophectoderm cells were removed before or shortly after attachment in vitro formed egg cylinders at the same time as intact blastocysts but their trophoblast outgrowths contained fewer giant cells at this time. The results support the idea that egg-cylinder formation in vitro is accompanied by a redirection of the polar to mural trophectoderm cell movement which characterizes blastocysts before implantation. The resumption of giant-cell number increase in trophoblast outgrowths after egg-cylinder formation may correspond to secondary giant-cell formation in vivo. It is suggested that a time-dependent change in the strength of trophoblast cell adhesion to the substratum occurs after blastocyst attachment in vitro which restricts the further entry of polar cells into the outgrowth and therefore results in egg-cylinder formation.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Y Liu ◽  
C Jones ◽  
K Coward

Abstract Study question What is the mechanism of embryo hatching? Will laser-assisted zona pellucida (ZP) drilling alter the embryonic transcriptome? Summary answer Hatching is an ATP-dependent process. Hatching is also associated with Rho-mediated signaling. Laser-assisted ZP drilling might cause alternation in embryo metabolism. What is known already Embryo hatching is a vital process for early embryo development and implantation. Animal data suggests that hatching is the result of multiple factors, such as mechanical pressure, protease activation, and the regulation of maternal secretions. However, little is known about the regulatory signaling mechanisms and the molecules involved. In addition, despite the extensive use of laser-assisted ZP drilling in the clinic, the safety profile of this technique at molecular level is very sparse. The impact of this technique on the embryonic transcriptome has not been studied systematically. Study design, size, duration Eighty mouse embryos were randomly divided into a laser ZP drilling group (n = 40) and an untreated group (n = 40). After treatment, embryos were cultured in vitro for two days. Then, hatching blastocyst (n = 8) and pre-hatching blastocyst (n = 8) from the untreated group, and the hatching blastocyst from the treatment group (n = 8) were processed for RNA sequencing (RNA-seq). Participants/materials, setting, methods Cryopreserved 8-cell stage mouse embryos (B6C3F1 × B6D2F1) were thawed, and a laser was used to drill the embryo ZP in the treatment group. Next, the treated and untreated embryos were individually cultured in vitro to the E4.5 blastocyst stage. The resulting blastocysts were lysed individually and used for subsequent cDNA library preparation and RNA-seq. Following data quality control and alignment, the RNA-seq data were processed for differentially expressed gene analysis and downstream functional analysis. Main results and the role of chance According to the RNA-seq data, 275 differentially expressed genes (DEGs) (230 up-regulated and 45 down-regulated, adjusted P < 0.05) were identified when comparing hatching and pre-hatching blastocysts in the control groups. Analysis suggested that the trophectoderm is the primary cell type involved in hatching, and revealed the potential molecules causing increased blastocyst hydrostatic pressure (Aqp3 and Cldn4). Functional enrichment analysis suggested that ATP metabolism and protein synthesis were activated in hatching blastocysts. DEGs were found to be significantly enriched in several gene ontology terms, particularly in terms of the organization of the cytoskeleton and actin polymerisation (P < 0.0001). Furthermore, according to QIAGEN ingenuity pathway analysis results, Rho signaling was implicated in blastocyst hatching (Actb, Arpc2, Cfl1, Myl6, Pfn1, Rnd3, Septin9, z-score=2.65, P < 0.0001). Moreover, the potential role of hormones (estrogen (z-score=2.24) and prolactin (z-score=2.4)) and growth factors (AGT (z-score=2.41) and FGF2 (z-score=2.213)) were implicated in the hatching process as indicated by the upstream regulator analysis. By comparing the transcriptome between laser-treated and untreated hatching blastocysts, 47 DEGs were identified (adjusted P < 0.05) following laser-assisted ZP drilling. These genes were enriched in metabolism-related pathways (P < 0.05), including the lipid metabolism pathway (Mvd, Mvk, Aacs, Gsk3a, Pik3c2a, Aldh9a1) and the xenobiotic metabolism pathway (Aldh18a1, Aldh9a1, Keap1, and Pik3c2a). Limitations, reasons for caution Findings in mouse embryos may not be fully representative of human embryos. Furthermore, the mechanism of hatching revealed here might only reflect the hatching process of embryos in vitro. Further studies are now necessary to confirm these findings in different conditions and species to determine their clinical significance. Wider implications of the findings: Our study profiled the mouse embryo transcriptome during in vitro hatching, identified potential key genes and mechanisms for future study. In addition, for the first time, we revealed the impact of laser-assisted ZP drilling on the transcriptome, this may help us to assess and improve the existing technique. Trial registration number Not applicable


Development ◽  
1988 ◽  
Vol 103 (2) ◽  
pp. 379-390 ◽  
Author(s):  
P.P. Tam

Orthotopic grafts of wheat germ agglutinin-colloidal gold conjugate (WGA-gold) labelled cells were used to demonstrate differences in the segmental fate of cells in the presomitic mesoderm of the early-somite-stage mouse embryos developing in vitro. Labelled cells in the anterior region of the presomitic mesoderm colonized the first three somites formed after grafting, while those grafted to the middle region of this tissue were found mostly in the 4th-7th newly formed somites. Labelled cells grafted to the posterior region were incorporated into somites whose somitomeres were not yet present in the presomitic mesoderm at the time of grafting. There was therefore an apparent posterior displacement of the grafted cells in the presomitic mesoderm. Colonization of somites by WGA-gold labelled cells was usually limited to two to three consecutive somites in the chimaera. The distribution of cells derived from a single graft to two somites was most likely due to the segregation of the labelled population when cells were allocated to adjacent meristic units during somite formation. Further spreading of the labelled cells to several somites in some cases was probably the result of a more extensive mixing of mesodermal cells among the somitomeres prior to somite segmentation.


Development ◽  
1978 ◽  
Vol 45 (1) ◽  
pp. 93-105
Author(s):  
Brigid Hogan ◽  
Rita Tilly

This paper describes the in vitro development of inner cell masses isolated immunosurgically from mouse blastocysts which had been collected on 3·5 days p.c. and then incubated for 24 h. The inner cell masses continue to grow in culture and develop through a series of stages with increasing complexity of internal organization. By day 1 all of the cultured ICMs have an outer layer of endoderm, and by day 3 some of them have two distinct kinds of inside cells; a columnar epithelial layer and a thin hemisphere of elongated cells. Later, mesodermal cells appear to delaminate from a limited region of the columnar layer, close to where it forms a junction with the thinner cells. By day 5, about 25% of the cultured ICMs have a striking resemblance to normal 7·5-day p.c. C3H embryos, with embryonic ectoderm, extra-embryonic ectoderm and chorion, embryonic and extra-embryonic mesoderm, and visceral endoderm. When mechanically disrupted and grown as attached clumps of cells in a tissue dish, these embryo-like structures give rise to trophoblast-like giant cells. These results suggest that the inner cell mass of 4·5-day p.c. blastocysts contains cells which can give rise to trophoblast derivates in culture.


Development ◽  
1986 ◽  
Vol 97 (1) ◽  
pp. 1-24
Author(s):  
Joseph R. McPhee ◽  
Thomas R. Van De Water

The otocyst is the epithelial anlage of the membranous labyrinth which interacts with surrounding cephalic mesenchyme to form an otic capsule. A series of in vitro studies was performed to gain a better understanding of the epithelial—mesenchymal interactions involved in this process. Parallel series of otocyst/mesenchyme (O/M) and isolated periotic mesenchyme (M) explants provided morphological and biochemical data to define the role of the otocyst in organizing and directing formation of its cartilaginous otic capsule. Explants were made from mouse embryos ranging in age from 10 to 14 days of gestation, and organ cultured under identical conditions until the chronological equivalent of 16 days of gestation. Expression of chrondrogenesis was determined by both histology and biochemistry. The in vitro behaviour of periotic mesenchyme explanted either with or without an otocyst supports several hypotheses that explain aspects of otic capsule development. The results indicate that (a) prior to embryonic day 12 the otocyst alone is not sufficient to stimulate chondrogenesis of the otic capsule within O/M explants; (b) the otocyst acts as an inductor of capsule chondrogenesis within O/M explants between embryonic days 12 to 13; (c) isolated mesenchyme within M explants taken from 13-day-old embryos are capable of initiating in vitro chondrogenesis, but without expressing capsule morphology in the absence of the otocyst; and (d) the isolated mesenchyme of M explants obtained from 14-day-old embryos expresses both chondrogenesis and otic capsule morphology in the absence of the otocyst. These findings suggest that the otocyst acts as an inductor of chondrogenesis of periotic mesenchyme tissue between embryonic days 11 to 13, and controls capsular morphogenesis between embryonic days 13 to 14 in the mouse embryo.


2000 ◽  
Vol 24 (1) ◽  
pp. 95-108 ◽  
Author(s):  
N Sahgal ◽  
GT Knipp ◽  
B Liu ◽  
BM Chapman ◽  
G Dai ◽  
...  

The prolactin (PRL) family is comprised of a group of hormones/cytokines that are expressed in the anterior pituitary, uterus, and placenta. These proteins participate in the control of maternal and fetal adaptations to pregnancy. In this report, we have identified two new nonclassical members of the rat PRL family through a search of the National Center for Biotechnology Information dbEST database. The cDNAs were sequenced and their corresponding mRNAs characterized. Overall, the rat cDNAs showed considerable structural similarities with mouse proliferin-related protein (PLF-RP) and prolactin-like protein-F (PLP-F), consistent with their classification as rat homologs for PLF-RP and PLP-F. The expression of both cytokines/hormones was restricted to the placenta. The intraplacental sites of PLF-RP and PLP-F synthesis differed in the rat and the mouse. In the mouse, PLF-RP was expressed in the trophoblast giant cell layer of the midgestation chorioallantoic and choriovitelline placentas and, during later gestation, in the trophoblast giant cell and spongiotrophoblast layers within the junctional zone of the mouse chorioallantoic placenta. In contrast, in the rat, PLF-RP was first expressed in the primordium of the chorioallantoic placenta (ectoplacental cone region) and, later, exclusively within the labyrinth zone of the chorioallantoic placenta. In the mouse, PLP-F is an exclusive product of the spongiotrophoblast layer, whereas in the rat, trophoblast giant cells were found to be the major source of PLP-F, with a lesser contribution from spongiotrophoblast cells late in gestation. In summary, we have established the presence of PLF-RP and PLP-F in the rat.


Sign in / Sign up

Export Citation Format

Share Document