P–182 The mechanism of mouse embryo hatching and the impact of laser drilling the zona pellucida: an RNA sequencing study

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Y Liu ◽  
C Jones ◽  
K Coward

Abstract Study question What is the mechanism of embryo hatching? Will laser-assisted zona pellucida (ZP) drilling alter the embryonic transcriptome? Summary answer Hatching is an ATP-dependent process. Hatching is also associated with Rho-mediated signaling. Laser-assisted ZP drilling might cause alternation in embryo metabolism. What is known already Embryo hatching is a vital process for early embryo development and implantation. Animal data suggests that hatching is the result of multiple factors, such as mechanical pressure, protease activation, and the regulation of maternal secretions. However, little is known about the regulatory signaling mechanisms and the molecules involved. In addition, despite the extensive use of laser-assisted ZP drilling in the clinic, the safety profile of this technique at molecular level is very sparse. The impact of this technique on the embryonic transcriptome has not been studied systematically. Study design, size, duration Eighty mouse embryos were randomly divided into a laser ZP drilling group (n = 40) and an untreated group (n = 40). After treatment, embryos were cultured in vitro for two days. Then, hatching blastocyst (n = 8) and pre-hatching blastocyst (n = 8) from the untreated group, and the hatching blastocyst from the treatment group (n = 8) were processed for RNA sequencing (RNA-seq). Participants/materials, setting, methods Cryopreserved 8-cell stage mouse embryos (B6C3F1 × B6D2F1) were thawed, and a laser was used to drill the embryo ZP in the treatment group. Next, the treated and untreated embryos were individually cultured in vitro to the E4.5 blastocyst stage. The resulting blastocysts were lysed individually and used for subsequent cDNA library preparation and RNA-seq. Following data quality control and alignment, the RNA-seq data were processed for differentially expressed gene analysis and downstream functional analysis. Main results and the role of chance According to the RNA-seq data, 275 differentially expressed genes (DEGs) (230 up-regulated and 45 down-regulated, adjusted P < 0.05) were identified when comparing hatching and pre-hatching blastocysts in the control groups. Analysis suggested that the trophectoderm is the primary cell type involved in hatching, and revealed the potential molecules causing increased blastocyst hydrostatic pressure (Aqp3 and Cldn4). Functional enrichment analysis suggested that ATP metabolism and protein synthesis were activated in hatching blastocysts. DEGs were found to be significantly enriched in several gene ontology terms, particularly in terms of the organization of the cytoskeleton and actin polymerisation (P < 0.0001). Furthermore, according to QIAGEN ingenuity pathway analysis results, Rho signaling was implicated in blastocyst hatching (Actb, Arpc2, Cfl1, Myl6, Pfn1, Rnd3, Septin9, z-score=2.65, P < 0.0001). Moreover, the potential role of hormones (estrogen (z-score=2.24) and prolactin (z-score=2.4)) and growth factors (AGT (z-score=2.41) and FGF2 (z-score=2.213)) were implicated in the hatching process as indicated by the upstream regulator analysis. By comparing the transcriptome between laser-treated and untreated hatching blastocysts, 47 DEGs were identified (adjusted P < 0.05) following laser-assisted ZP drilling. These genes were enriched in metabolism-related pathways (P < 0.05), including the lipid metabolism pathway (Mvd, Mvk, Aacs, Gsk3a, Pik3c2a, Aldh9a1) and the xenobiotic metabolism pathway (Aldh18a1, Aldh9a1, Keap1, and Pik3c2a). Limitations, reasons for caution Findings in mouse embryos may not be fully representative of human embryos. Furthermore, the mechanism of hatching revealed here might only reflect the hatching process of embryos in vitro. Further studies are now necessary to confirm these findings in different conditions and species to determine their clinical significance. Wider implications of the findings: Our study profiled the mouse embryo transcriptome during in vitro hatching, identified potential key genes and mechanisms for future study. In addition, for the first time, we revealed the impact of laser-assisted ZP drilling on the transcriptome, this may help us to assess and improve the existing technique. Trial registration number Not applicable

Development ◽  
1986 ◽  
Vol 97 (1) ◽  
pp. 1-24
Author(s):  
Joseph R. McPhee ◽  
Thomas R. Van De Water

The otocyst is the epithelial anlage of the membranous labyrinth which interacts with surrounding cephalic mesenchyme to form an otic capsule. A series of in vitro studies was performed to gain a better understanding of the epithelial—mesenchymal interactions involved in this process. Parallel series of otocyst/mesenchyme (O/M) and isolated periotic mesenchyme (M) explants provided morphological and biochemical data to define the role of the otocyst in organizing and directing formation of its cartilaginous otic capsule. Explants were made from mouse embryos ranging in age from 10 to 14 days of gestation, and organ cultured under identical conditions until the chronological equivalent of 16 days of gestation. Expression of chrondrogenesis was determined by both histology and biochemistry. The in vitro behaviour of periotic mesenchyme explanted either with or without an otocyst supports several hypotheses that explain aspects of otic capsule development. The results indicate that (a) prior to embryonic day 12 the otocyst alone is not sufficient to stimulate chondrogenesis of the otic capsule within O/M explants; (b) the otocyst acts as an inductor of capsule chondrogenesis within O/M explants between embryonic days 12 to 13; (c) isolated mesenchyme within M explants taken from 13-day-old embryos are capable of initiating in vitro chondrogenesis, but without expressing capsule morphology in the absence of the otocyst; and (d) the isolated mesenchyme of M explants obtained from 14-day-old embryos expresses both chondrogenesis and otic capsule morphology in the absence of the otocyst. These findings suggest that the otocyst acts as an inductor of chondrogenesis of periotic mesenchyme tissue between embryonic days 11 to 13, and controls capsular morphogenesis between embryonic days 13 to 14 in the mouse embryo.


2020 ◽  
pp. jbc.RA120.015876
Author(s):  
Yating Wang ◽  
Liming Hou ◽  
M. Behfar Ardehali ◽  
Robert E. Kingston ◽  
Brian D Dynlacht

Elongin is an RNA polymerase II (RNAPII)-associated factor that has been shown to stimulate transcriptional elongation in vitro. The Elongin complex is thought to be required for transcriptional induction in response to cellular stimuli and to ubiquitinate RNAPII in response to DNA damage. Yet the impact of the Elongin complex on transcription in vivo has not been well studied. Here, we performed comprehensive studies of the role of Elongin A, the largest subunit of the Elongin complex, on RNAPII transcription genome-wide. Our results suggest that Elongin A localizes to actively transcribed regions and potential enhancers, and the level of recruitment correlated with transcription levels. We also identified a large group of factors involved in transcription as Elongin A-associated factors. In addition, we found that loss of Elongin A leads to dramatically reduced levels of Ser2-phosphorylated, but not total, RNAPII, and cells depleted of Elongin A show stronger promoter RNAPII pausing, suggesting that Elongin A may be involved in the release of paused RNAPII. Our RNA-seq studies suggest that loss of Elongin A did not alter global transcription, and unlike prior in vitro studies, we did not observe a dramatic impact on RNAPII elongation rates in our cell-based nascent RNA-seq experiments upon Elongin A depletion. Taken together, our studies provide the first comprehensive analysis of the role of Elongin A in regulating transcription in vivo. Our studies also revealed that unlike prior in vitro findings, depletion of Elongin A has little impact on global transcription profiles and transcription elongation in vivo.


Zygote ◽  
1999 ◽  
Vol 7 (2) ◽  
pp. 123-129 ◽  
Author(s):  
Yong Pil Cheon ◽  
Myung Chan Gye ◽  
Chung-hoon Kim ◽  
Byung Moon Kang ◽  
Yoon Seok Chang ◽  
...  

Hatching has been suggested to occur as a result of protease-mediated lysis and the blastocoele tension. However, even if rupturing is initiated at multiple sites, interestingly only a single site is used for escape. This implies that there are several mechanisms involved in hatching. In this study, the involvement of actin filaments in mouse embryo hatching was examined. We treated mouse embryos with cytochalasin B for 12 h or 24 h at the morula, middle blastocyst, expanded blastocyst, lobe-formed blastocyst and hatching blastocyst stages, and measured the amount and distribution of actin filaments using a confocal microscope. At morula, middle blastocyst, lobe-formed blastocyst and hatching blastocyst stages embryonic development was completely arrested by cytochalasin B. However, when transferred to cytochalasin-B-free medium, the embryos resumed development and escaped the zona pellucida. In the expanded blastocysts development was almost completely inhibited by cytochalasin B, but rupturing occurred in some embryos. However, development stopped completely at the ruptured stage. Distribution of actin filaments was prominent at rupturing and hatching sites regardless of cytochalasin B treatment. The amount of actin filaments was prominent at hatching embryos compared with other developmental stages of embryos. These actin filaments were distributed intensively between the trophectodermal cells, and formed locomotion patterns. Taken together, these results suggest that not only tension and lytic enzymes are required to rupture, but the activity of actin filaments may have a crucial role in the process of hatching.


Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2999
Author(s):  
Deborah Reynaud ◽  
Roland Abi Nahed ◽  
Nicolas Lemaitre ◽  
Pierre-Adrien Bolze ◽  
Wael Traboulsi ◽  
...  

The inflammatory gene NLRP7 is the major gene responsible for recurrent complete hydatidiform moles (CHM), an abnormal pregnancy that can develop into gestational choriocarcinoma (CC). However, the role of NLRP7 in the development and immune tolerance of CC has not been investigated. Three approaches were employed to define the role of NLRP7 in CC development: (i) a clinical study that analyzed human placenta and sera collected from women with normal pregnancies, CHM or CC; (ii) an in vitro study that investigated the impact of NLRP7 knockdown on tumor growth and organization; and (iii) an in vivo study that used two CC mouse models, including an orthotopic model. NLRP7 and circulating inflammatory cytokines were upregulated in tumor cells and in CHM and CC. In tumor cells, NLRP7 functions in an inflammasome-independent manner and promoted their proliferation and 3D organization. Gravid mice placentas injected with CC cells invalidated for NLRP7, exhibited higher maternal immune response, developed smaller tumors, and displayed less metastases. Our data characterized the critical role of NLRP7 in CC and provided evidence of its contribution to the development of an immunosuppressive maternal microenvironment that not only downregulates the maternal immune response but also fosters the growth and progression of CC.


2010 ◽  
Vol 54 (6) ◽  
pp. 2345-2353 ◽  
Author(s):  
Nicolas A. Margot ◽  
Craig S. Gibbs ◽  
Michael D. Miller

ABSTRACT Bevirimat (BVM) is the first of a new class of anti-HIV drugs with a novel mode of action known as maturation inhibitors. BVM inhibits the last cleavage of the Gag polyprotein by HIV-1 protease, leading to the accumulation of the p25 capsid-small peptide 1 (SP1) intermediate and resulting in noninfectious HIV-1 virions. Early clinical studies of BVM showed that over 50% of the patients treated with BVM did not respond to treatment. We investigated the impact of prior antiretroviral (ARV) treatment and/or natural genetic diversity on BVM susceptibility by conducting in vitro phenotypic analyses of viruses made from patient samples. We generated 31 recombinant viruses containing the entire gag and protease genes from 31 plasma samples from HIV-1-infected patients with (n = 21) or without (n = 10) prior ARV experience. We found that 58% of the patient isolates tested had a >10-fold reduced susceptibility to BVM, regardless of the patient's ARV experience or the level of isolate resistance to protease inhibitors. Analysis of mutants with site-directed mutations confirmed the role of the V370A SP1 polymorphism (SP1-V7A) in resistance to BVM. Furthermore, we demonstrated for the first time that a capsid polymorphism, V362I (CA protein-V230I), is also a major mutation conferring resistance to BVM. In contrast, none of the previously defined resistance-conferring mutations in Gag selected in vitro (H358Y, L363M, L363F, A364V, A366V, or A366T) were found to occur among the viruses that we analyzed. Our results should be helpful in the design of diagnostics for prediction of the potential benefit of BVM treatment in HIV-1-infected patients.


Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 3055
Author(s):  
Elisabetta Stanzani ◽  
Leire Pedrosa ◽  
Guillaume Bourmeau ◽  
Oceane Anezo ◽  
Aleix Noguera-Castells ◽  
...  

Therapeutic resistance after multimodal therapy is the most relevant cause of glioblastoma (GBM) recurrence. Extensive cellular heterogeneity, mainly driven by the presence of GBM stem-like cells (GSCs), strongly correlates with patients’ prognosis and limited response to therapies. Defining the mechanisms that drive stemness and control responsiveness to therapy in a GSC-specific manner is therefore essential. Here we investigated the role of integrin a6 (ITGA6) in controlling stemness and resistance to radiotherapy in proneural and mesenchymal GSCs subtypes. Using cell sorting, gene silencing, RNA-Seq, and in vitro assays, we verified that ITGA6 expression seems crucial for proliferation and stemness of proneural GSCs, while it appears not to be relevant in mesenchymal GSCs under basal conditions. However, when challenged with a fractionated protocol of radiation therapy, comparable to that used in the clinical setting, mesenchymal GSCs were dependent on integrin a6 for survival. Specifically, GSCs with reduced levels of ITGA6 displayed a clear reduction of DNA damage response and perturbation of cell cycle pathways. These data indicate that ITGA6 inhibition is able to overcome the radioresistance of mesenchymal GSCs, while it reduces proliferation and stemness in proneural GSCs. Therefore, integrin a6 controls crucial characteristics across GBM subtypes in GBM heterogeneous biology and thus may represent a promising target to improve patient outcomes.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Christina Grothusen ◽  
Harald Schuett ◽  
Stefan Lumpe ◽  
Andre Bleich ◽  
Silke Glage ◽  
...  

Introduction: Atherosclerosis is a chronic inflammatory disease of the cardiovascular system which may result in myocardial infarction and sudden cardiac death. While the role of pro-inflammatory signaling pathways in atherogenesis has been well characterized, the impact of their negative regulators, e.g. suppressor of cytokine signaling (SOCS)-1 remains to be elucidated. Deficiency of SOCS-1 leads to death 3 weeks post-partum due to an overwhelming inflammation caused by an uncontrolled signalling of interferon-gamma (IFNγ). This phenotype can be rescued by generating recombination activating gene (rag)-2, SOCS-1 double knock out (KO) mice lacking mature lymphocytes, the major source of IFNγ. Since the role of SOCS-1 during atherogenesis is unknown, we investigated the impact of a systemic SOCS-1 deficiency in the low-density lipoprotein receptor (ldlr) KO model of atherosclerosis. Material and Methods: socs-1 −/− /rag-2 −/− deficient mice were crossed with ldlr-KO animals. Mice were kept under sterile conditions on a normal chow diet. For in-vitro analyses, murine socs-1 −/− macrophages were stimulated with native low density lipoprotein (nLDL) or oxidized (ox)LDL. SOCS-1 expression was determined by quantitative PCR and western blot. Foam cell formation was determined by Oil red O staining. Results: socs-1 −/− /rag-2 −/− /ldlr −/− mice were born according to mendelian law. Tripel-KO mice showed a reduced weight and size, were more sensitive to bacterial infections and died within 120 days (N=17). Histological analyses revealed a systemic, necrotic, inflammation in Tripel-KO mice. All other genotypes developed no phenotype. In-vitro observations revealed that SOCS-1 mRNA and protein is upregulated in response to stimulation with oxLDL but not with nLDL. Foam cell formation of socs-1 −/− macrophages was increased compared to controls. Conclusion: SOCS-1 seemingly controls critical steps of atherogenesis by modulating foam cell formation in response to stimulation with oxLDL. SOCS-1 deficiency in the ldlr-KO mouse leads to a lethal inflammation. These observations suggest a critical role for SOCS-1 in the regulation of early inflammatory responses in atherogenesis.


Nutrients ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 3198 ◽  
Author(s):  
Francesco Pecora ◽  
Federica Persico ◽  
Alberto Argentiero ◽  
Cosimo Neglia ◽  
Susanna Esposito

Viral infections are a leading cause of morbidity and mortality worldwide, and the importance of public health practices including handwashing and vaccinations in reducing their spread is well established. Furthermore, it is well known that proper nutrition can help support optimal immune function, reducing the impact of infections. Several vitamins and trace elements play an important role in supporting the cells of the immune system, thus increasing the resistance to infections. Other nutrients, such as omega-3 fatty acids, help sustain optimal function of the immune system. The main aim of this manuscript is to discuss of the potential role of micronutrients supplementation in supporting immunity, particularly against respiratory virus infections. Literature analysis showed that in vitro and observational studies, and clinical trials, highlight the important role of vitamins A, C, and D, omega-3 fatty acids, and zinc in modulating the immune response. Supplementation with vitamins, omega 3 fatty acids and zinc appears to be a safe and low-cost way to support optimal function of the immune system, with the potential to reduce the risk and consequences of infection, including viral respiratory infections. Supplementation should be in addition to a healthy diet and fall within recommended upper safety limits set by scientific expert bodies. Therefore, implementing an optimal nutrition, with micronutrients and omega-3 fatty acids supplementation, might be a cost-effective, underestimated strategy to help reduce the burden of infectious diseases worldwide, including coronavirus disease 2019 (COVID-19).


2020 ◽  
Author(s):  
Silvia Llonch ◽  
Montserrat Barragán ◽  
Paula Nieto ◽  
Anna Mallol ◽  
Marc Elosua-Bayes ◽  
...  

AbstractStudy questionTo which degree does maternal age affect the transcriptome of human oocytes at the germinal vesicle (GV) stage or at metaphase II after maturation in vitro (IVM-MII)?Summary answerWhile the oocytes’ transcriptome is predominantly determined by maturation stage, transcript levels of genes related to chromosome segregation, mitochondria and RNA processing are affected by age after in vitro maturation of denuded oocytes.What is known alreadyFemale fertility is inversely correlated with maternal age due to both a depletion of the oocyte pool and a reduction in oocyte developmental competence. Few studies have addressed the effect of maternal age on the human mature oocyte (MII) transcriptome, which is established during oocyte growth and maturation, and the pathways involved remain unclear. Here, we characterize and compare the transcriptomes of a large cohort of fully grown GV and IVM-MII oocytes from women of varying reproductive age.Study design, size, durationIn this prospective molecular study, 37 women were recruited from May 2018 to June 2019. The mean age was 28.8 years (SD=7.7, range 18-43). A total of 72 oocytes were included in the study at GV stage after ovarian stimulation, and analyzed as GV (n=40) and in vitro matured oocytes (IVM-MII; n=32).Participants/materials, setting, methodsDenuded oocytes were included either as GV at the time of ovum pick-up or as IVM-MII after in vitro maturation for 30 hours in G2™ medium, and processed for transcriptomic analysis by single-cell RNA-seq using the Smart-seq2 technology. Cluster and maturation stage marker analysis were performed using the Seurat R package. Genes with an average fold change greater than 2 and a p-value < 0.01 were considered maturation stage markers. A Pearson correlation test was used to identify genes whose expression levels changed progressively with age. Those genes presenting a correlation value (R) >= |0.3| and a p-value < 0.05 were considered significant.Main results and the role of chanceFirst, by exploration of the RNA-seq data using tSNE dimensionality reduction, we identified two clusters of cells reflecting the oocyte maturation stage (GV and IVM-MII) with 4,445 and 324 putative marker genes, respectively. Next we identified genes, for which RNA levels either progressively increased or decreased with age. This analysis was performed independently for GV and IVM-MII oocytes. Our results indicate that the transcriptome is more affected by age in IVM-MII oocytes (1,219 genes) than in GV oocytes (596 genes). In particular, we found that genes involved in chromosome segregation and RNA splicing significantly increase in transcript levels with age, while genes related to mitochondrial activity present lower transcript levels with age. Gene regulatory network analysis revealed potential upstream master regulator functions for genes whose transcript levels present positive (GPBP1, RLF, SON, TTF1) or negative (BNC1, THRB) correlation with age.Limitations, reasons for cautionIVM-MII oocytes used in this study were obtained after in vitro maturation of denuded GV oocytes, therefore, their transcriptome might not be fully representative of in vivo matured MII oocytes.The Smart-seq2 methodology used in this study detects polyadenylated transcripts only and we could therefore not assess non-polyadenylated transcripts.Wider implications of the findingsOur analysis suggests that advanced maternal age does not globally affect the oocyte transcriptome at GV or IVM-MII stages. Nonetheless, hundreds of genes displayed altered transcript levels with age, particularly in IVM-MII oocytes. Especially affected by age were genes related to chromosome segregation and mitochondrial function, pathways known to be involved in oocyte ageing. Our study thereby suggests that misregulation of chromosome segregation and mitochondrial pathways also at the RNA-level might contribute to the age-related quality decline in human oocytes.Study funding/competing interest(s)This study was funded by the AXA research fund, the European commission, intramural funding of Clinica EUGIN, the Spanish Ministry of Science, Innovation and Universities, the Catalan Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) and by contributions of the Spanish Ministry of Economy, Industry and Competitiveness (MEIC) to the EMBL partnership and to the “Centro de Excelencia Severo Ochoa”.The authors have no conflict of interest to declare.


Development ◽  
1988 ◽  
Vol 103 (2) ◽  
pp. 379-390 ◽  
Author(s):  
P.P. Tam

Orthotopic grafts of wheat germ agglutinin-colloidal gold conjugate (WGA-gold) labelled cells were used to demonstrate differences in the segmental fate of cells in the presomitic mesoderm of the early-somite-stage mouse embryos developing in vitro. Labelled cells in the anterior region of the presomitic mesoderm colonized the first three somites formed after grafting, while those grafted to the middle region of this tissue were found mostly in the 4th-7th newly formed somites. Labelled cells grafted to the posterior region were incorporated into somites whose somitomeres were not yet present in the presomitic mesoderm at the time of grafting. There was therefore an apparent posterior displacement of the grafted cells in the presomitic mesoderm. Colonization of somites by WGA-gold labelled cells was usually limited to two to three consecutive somites in the chimaera. The distribution of cells derived from a single graft to two somites was most likely due to the segregation of the labelled population when cells were allocated to adjacent meristic units during somite formation. Further spreading of the labelled cells to several somites in some cases was probably the result of a more extensive mixing of mesodermal cells among the somitomeres prior to somite segmentation.


Sign in / Sign up

Export Citation Format

Share Document