Effect of epidermal growth factor on secondary palatal epithelium in vitro: tissue isolation and recombination studies

Development ◽  
1980 ◽  
Vol 58 (1) ◽  
pp. 93-106
Author(s):  
Mary S. Tyler ◽  
Robert M. Pratt

Previous studies have shown that epidermal growth factor (EGF), a peptide of m.w. 6045, can specifically inhibit in organ culture the cessation of DNA synthesis and programmed cell death that normally occur in the presumptive fusion zone (PFZ) of the secondary palatal epithelium. The aim of this study was to determine if EGF acts directly on the epithelium to exert its effect and if there is a requirement for the underlying mesenchyme. Palatal processes from 13- and 14-day Swiss Webster embryonic mice were enzymatically separated into epithelium and mesenchyme which were then cultured alone or in transfilter recombination for up to 72 h. Tissues were examined by transmission- and scanning-electron microscopy and DNA synthesis was monitored autoradiographically using [3H]thymidine incorporation. In isolated epithelium cultured in control medium, cell death occurred in the PFZ and DNA synthesis did not occur in the oral and nasal epithelial regions. EGF (20–50 ng/ml) did not prevent cell death in the PFZ and failed to stimulate DNA synthesis in the isolated epithelium; EGF, however, did have an effect on epithelial cell morphology. In the presence of mesenchyme and EGF, there was extensive proliferation in the entire epithelium and cell death within the PFZ was not evident. The results indicate that the stimulation of DNA synthesis in the palatal epithelium by EGF requires the presence of the underlying mesenchyme and that EFG alone is not sufficient to inhibit programmed cell death within the PFZ of the isolated palatal epithelium.

1984 ◽  
Vol 98 (3) ◽  
pp. 1082-1089 ◽  
Author(s):  
C P Burns ◽  
E Rozengurt

Initiation of DNA synthesis in confluent quiescent 3T3 cell cultures stimulated by epidermal growth factor (EGF), vasopressin, and insulin was abolished by removing extracellular Na+. The inhibition was reversible, time- and Na+-concentration-dependent, and not due to an effect on binding or internalization of 125I-EGF. Stimulation by combinations of other growth factors with different mechanisms of action was also affected by decreasing extracellular Na+, but with different half-maximal Na+ concentrations. When choline was used as an osmotic substitute for Na+, the decrease in DNA synthesis was correlated with the decrease in intracellular K+. In contrast, when sucrose was used there was stimulation of the Na+-K+ pump and maintenance of intracellular K+ that resulted in a somewhat higher rate of DNA synthesis at lowered extracellular Na+ compared to choline. Mitogenesis induced by epidermal growth factor, vasopressin, and insulin led to cytoplasmic alkalinization as determined by an increase in uptake of the weak acid 5,5-dimethyloxazolidine-2,4-dione. Experimental decrease in extracellular Na+ blocked this cellular alkalinization. Therefore, under some conditions the supply of extracellular Na+ may limit cellular proliferation because of a reduction in the provision of Na+ to the Na+/H+ antiport and resultant failure of alkalinization. We conclude that Na+ flux and its effect on intracellular K and pH has a major role in the complex system that regulates proliferation.


1991 ◽  
Vol 260 (6) ◽  
pp. C1158-C1164 ◽  
Author(s):  
R. D. Grubbs

The acute effects of epidermal growth factor (EGF) on Mg2+ homeostasis were studied in differentiated BC3H1 myocytes. EGF produced a 48-fold stimulation of [3H]thymidine incorporation into quiescent serum-starved cells in the presence of Mg2+, whereas insulin had no effect on [3H]thymidine incorporation. The dose dependence of EGF-stimulated [3H]thymidine incorporation was similar to that of EGF stimulation of 28Mg2+ uptake. In cells loaded with the Mg(2+)-sensitive fluorescent indicator, Mag-fura-2, intracellular Mg2+ concentration ([Mg2+]i) increased after exposure to EGF after a 5-min lag; a similar lag was routinely observed before the stimulation of 28Mg2+ uptake by EGF. In control studies, cytosolic free Ca2+ levels and intracellular pH (pHi) were unchanged during 20 min of exposure to EGF. These results suggest that [Mg2+]i in BC3H1 cells is regulated by EGF. This regulation is not mediated by changes in pHi or intracellular Ca2+ concentration and may constitute an important event in the physiological response of these cells to EGF. The results are discussed within the context of cellular regulation of Mg2+ homeostasis.


Sign in / Sign up

Export Citation Format

Share Document