The control of growth and the development of pattern across the anteroposterior axis of the chick limb bud

Development ◽  
1981 ◽  
Vol 63 (1) ◽  
pp. 161-180
Author(s):  
Dennis Summerbell

Two grafts of zone of polarizing activity (ZPA) were made to host limb buds. The grafts define the width of the shared responding field lying between them. They cause a change in the growth pattern of the bud so that there is an increase in the width of the tissue between the grafts. Concurrently they redefine (respecify) cell states in the responding tissue so as to cause formation of a mirror-image reduplicate hand between them. The number and type of digits formed depends on the initial distance between the grafts. The results suggest that the initial presumptive hand field is very small (∼ 300µm), that it is not a classical morphallactic system, and that it is able to regulate its growth pattern. A pointsource diffusion model is presented.

Development ◽  
1974 ◽  
Vol 32 (1) ◽  
pp. 227-237
Author(s):  
Dennis Summerbell

The experiments examine the extent of reduplication of skeletal parts across the anteroposterior axis, following the transplantation of a zone of polarizing activity (ZPA) to the anterior margin of the limb-bud at successively later stages. Previous studies have suggested that the function of the apical ectodermal ridge (AER) is to maintain cells in a special region at the distal tip (the progress zone) labile, with respect to their positional value along the proximo-distal axis. Similarly, the results of these experiments demonstrate that cells in the progress zone are able to change their antero-posterior positional value under the influence of the grafted ZPA, while cells at more proximal levels remain unaffected. In turn, the ZPA may effect the activity of the AER and hence the progress zone.


Development ◽  
1985 ◽  
Vol 86 (1) ◽  
pp. 169-175
Author(s):  
J. Richard Hinchliffe ◽  
Anna Sansom

The stage-21 to 22 legbud polarizing zone (ZPA) was mapped by transplanting small blocks of posterior marginal mesenchyme preaxially into stage-20 to -22 chick wing buds and assessing the degree of duplication of the wing digital skeleton produced in the host. Blocks taken from the posterior flank, from the angle between posterior flank and the proximal base of the limb bud, and from the most anterior distal position chosen (under the AER), all had very low activity. Blocks taken from the posterior margin of the legbud, plus the next distal block under the posterior part of the AER, all had high activity. We consider that barrier and amputation results on wing and legbud, when interpreted in the light of maps of the ZPA in both limb buds, are consistent with the hypothesis that both leg and wing have their growth and anteroposterior axis of pattern formation controlled by the ZPA.


Development ◽  
1997 ◽  
Vol 124 (21) ◽  
pp. 4393-4404 ◽  
Author(s):  
Y. Yang ◽  
G. Drossopoulou ◽  
P.T. Chuang ◽  
D. Duprez ◽  
E. Marti ◽  
...  

Anteroposterior polarity in the vertebrate limb is thought to be regulated in response to signals derived from a specialized region of distal posterior mesenchyme, the zone of polarizing activity. Sonic Hedgehog (Shh) is expressed in the zone of polarizing activity and appears to mediate the action of the zone of polarizing activity. Here we have manipulated Shh signal in the limb to assess whether it acts as a long-range signal to directly pattern all the digits. Firstly, we demonstrate that alterations in digit development are dependent upon the dose of Shh applied. DiI-labeling experiments indicate that cells giving rise to the extra digits lie within a 300 microm radius of a Shh bead and that the most posterior digits come from cells that lie very close to the bead. A response to Shh involves a 12–16 hour period in which no irreversible changes in digit pattern occur. Increasing the time of exposure to Shh leads to specification of additional digits, firstly digit 2, then 3, then 4. Cell marking experiments demonstrate that cells giving rise to posterior digits are first specified as anterior digits and later adopt a more posterior character. To monitor the direct range of Shh signalling, we developed sensitive assays for localizing Shh by attaching alkaline phosphatase to Shh and introducing cells expressing these forms into the limb bud. These experiments demonstrate that long-range diffusion across the anteroposterior axis of the limb is possible. However, despite a dramatic difference in their diffusibility in the limb mesenchyme, the two forms of alkaline phosphatase-tagged Shh proteins share similar polarizing activity. Moreover, Shh-N (aminoterminal peptide of Shh)-coated beads and Shh-expressing cells also exhibit similar patterning activity despite a significant difference in the diffusibility of Shh from these two sources. Finally, we demonstrate that when Shh-N is attached to an integral membrane protein, cells transfected with this anchored signal also induce mirror-image pattern duplications in a dose-dependent fashion similar to the zone of polarizing activity itself. These data suggest that it is unlikely that Shh itself signals digit formation at a distance. Beads soaked in Shh-N do not induce Shh in anterior limb mesenchyme ruling out direct propagation of a Shh signal. However, Shh induces dose-dependent expression of Bmp genes in anterior mesenchyme at the start of the promotion phase. Taken together, these results argue that the dose-dependent effects of Shh in the regulation of anteroposterior pattern in the limb may be mediated by some other signal(s). BMPs are plausible candidates.


Development ◽  
1999 ◽  
Vol 126 (2) ◽  
pp. 409-421
Author(s):  
I. Munoz-Sanjuan ◽  
B.K. Simandl ◽  
J.F. Fallon ◽  
J. Nathans

Members of the fibroblast growth factor (FGF) family have been identified as signaling molecules in a variety of developmental processes, including important roles in limb bud initiation, growth and patterning. This paper reports the cloning and characterization of the chicken orthologues of fibroblast growth factor homologous factors-1 and −2 (cFHF-1/cFGF-12 and cFHF-2/cFGF-13, respectively). We also describe the identification of a novel, conserved isoform of FHF-2 in chickens and mammals. This isoform arises by alternative splicing of the first exon of the FHF-2 gene and is predicted to encode a polypeptide with a distinct amino-terminus. Whole-mount in situ hybridization reveals restricted domains of expression of cFHF-1 and cFHF-2 in the developing neural tube, peripheral sensory ganglia and limb buds, and shows that the two cFHF-2 transcript isoforms are present in non-overlapping spatial distributions in the neural tube and adjacent structures. In the developing limbs, cFHF-1 is confined to the posterior mesoderm in an area that encompasses the zone of polarizing activity and cFHF-2 is confined to the distal anterior mesoderm in a region that largely overlaps the progress zone. Ectopic cFHF-2 expression is induced adjacent to grafts of cells expressing Sonic Hedgehog and the zone of cFHF-2 expression is expanded in talpid2 embryos. In the absence of the apical ectodermal ridge or in wingless or limbless mutant embryos, expression of cFHF-1 and cFHF-2 is lost from the limb bud. A role for cFHF-2 in the patterning and growth of skeletal elements is implied by the observation that engraftment of developing limb buds with QT6 cells expressing a cFHF-2 isoform that is normally expressed in the limb leads to a variety of morphological defects. Finally, we show that a secreted version of cFHF-2 activates the expression of HoxD13, HoxD11, Fgf-4 and BMP-2 ectopically, consistent with cFHF-2 playing a role in anterior-posterior patterning of the limb.


Development ◽  
1981 ◽  
Vol 62 (1) ◽  
pp. 203-216
Author(s):  
Lawrence S. Honig ◽  
J. C. Smith ◽  
Amata Hornbruch ◽  
L. Wolpert

In 3- to 4-day embryonic chick limb buds, a region at the posterior margin of the limb, the zone of polarizing activity, appears to be responsible for signalling positional information along the anteroposterior axis. Our experiments were designed to test which biosynthetic processes are required for polarizing activity. We have treated polarizing regions with biochemical inhibitors, and then assayed their abilities to induce limb reduplications when grafted into anterior sites on host limb buds, and also measured their capacities for protein, RNA, and DNA synthesis. DNA synthesis, and possibly oxidative phosphorylation, do not seem to be required for polarizing activity. But, glycolysis and protein and RNA synthesis are necessary, although not sufficient, for polarizing region activity. Activity seems particularly sensitive to inhibitors (actinomycin D and α-amanitin) of RNA synthesis.


Development ◽  
1991 ◽  
Vol 113 (2) ◽  
pp. 431-444 ◽  
Author(s):  
Y. Yokouchi ◽  
K. Ohsugi ◽  
H. Sasaki ◽  
A. Kuroiwa

A chicken gene carrying a homeobox highly homologous to the Drosophila muscle segment homeobox (msh) gene was isolated and designated as Msx-1. Conceptual translation from the longest ORF gave a protein of 259 amino acids lacking the conserved hexapeptide. Northern analysis detected a single 2.6 kb transcript. As early as day 2 of incubation, the transcript was detected but was not found in adult tissue. In situ hybridization analysis revealed that Msx-1 expression is closely related to a particular mesenchymal cell lineage during limb bud formation. In early stage embryos, Msx-1 was expressed in the somatopleure. When primordial mesenchyme cells for limb bud were generated from the Wolffian ridge of the somatopleure, Msx-1 expression began to diminish in the posterior half of the limb bud then in the presumptive cartilage-forming mesenchyme. In developing limb buds, remarkable expression was seen in the apical ectodermal ridge (AER), which is responsible for the sustained outgrowth and development of the limb. The Msx-1 transcripts were found in the limb mesenchymal cells in the region covering the necrotic zone and ectodermal cells overlying such mesenchymal cells. Both ectodermal and mesenchymal expression in limb bud were rapidly suppressed by local treatment of retinoic acid which can generate mirror-image duplication of digits. This indicates that retinoic acid alters the marginal presumptive non-cartilage forming mesenchyme cell lineage through suppression of Msx-1 expression.


Development ◽  
1987 ◽  
Vol 100 (2) ◽  
pp. 333-338
Author(s):  
L. Wolpert ◽  
A. Hornbruch

The positional signal model for specification of the cartilaginous elements in limb development has been tested by examining the effect on the humerus of grafting a polarizing region to different positions along the anteroposterior axis of the limb bud at stage 16. The humerus between the host and grafted polarizing region was largely normal though there were variations in width, particularly the distal epiphysis. The humerus often showed mirror-image symmetry along the anteroposterior axis. When the grafted polarizing region was in a very anterior position, there were a few cases where a second humerus developed. Anterior to the graft an additional humerus often developed. This was associated with the splitting of the bud into two domains. It is suggested that these results are not consistent with a positional signal model and that an additional mechanism involving an isomorphic prepattern may be involved in the specification of the cartilaginous elements.


2006 ◽  
Vol 84 (2) ◽  
pp. 257-262 ◽  
Author(s):  
W Y Chang ◽  
F KhosrowShahian ◽  
M Wolanski ◽  
R Marshall ◽  
W McCormick ◽  
...  

In contrast to the pattern of limb emergence in mammals, chicks, and the newt N. viridescens, embryos such as Xenopus laevis and Eleutherodactylus coqui initiate pelvic limb buds before they develop pectoral ones. We studied the expression of Pitx1 in X. laevis and E. coqui to determine if this paired-like homeodomain transcription factor directs differentiation specifically of the hindlimb, or if it directs the second pair of limbs to form, namely the forelimbs. We also undertook to determine if embryonic expression patterns were recapitulated during the regeneration of an amputated limb bud. Pitx1 is expressed in hindlimbs in both X. laevis and E. coqui, and expression is similar in both developing and regenerating limb buds. Expression in hindlimbs is restricted to regions of proliferating mesenchyme.Key words: regeneration, Xenopus laevis, limb bud, Pitx1 protein, specification.


Development ◽  
1992 ◽  
Vol 115 (2) ◽  
pp. 629-637 ◽  
Author(s):  
C.N. Coelho ◽  
W.B. Upholt ◽  
R.A. Kosher

During early stages of normal chick limb development, the homeobox-containing (HOX) gene GHox-4.6 is expressed throughout the posterior mesoderm of the wing bud from which most of the skeletal elements including the digits will develop, whereas GHox-8 is expressed in the anterior limb bud mesoderm which will not give rise to skeletal elements. In the present study, we have examined the expression of GHox-4.6 and GHox-8 in the wing buds of two polydactylous mutant chick embryos, diplopodia-5 and talpid2, from which supernumerary digits develop from anterior limb mesoderm, and have also examined the expression of these genes in response to polarizing zone grafts and retinoic acid-coated bead implants which induce the formation of supernumerary digits from anterior limb mesoderm. We have found that the formation of supernumerary digits from the anterior mesoderm in mutant and experimentally induced polydactylous limb buds is preceded by the ectopic expression of GHox-4.6 in the anterior mesoderm and the coincident suppression of GHox-8 expression in the anterior mesoderm. These observations suggest that the anterior mesoderm of the polydactylous limb buds is “posteriorized” and support the suggestion that GHox-8 and GHox-4.6, respectively, are involved in specifying the anterior non-skeletal and posterior digit-forming regions of the limb bud. Although the anterior mesodermal domain of GHox-8 expression is severely impaired in the mutant and experimentally induced polydactylous limb buds, this gene is expressed by the prolonged, thickened apical ectodermal ridges of the polydactylous limb buds that extend along the distal anterior as well as the distal posterior mesoderm.(ABSTRACT TRUNCATED AT 250 WORDS)


Development ◽  
1991 ◽  
Vol 111 (3) ◽  
pp. 725-731 ◽  
Author(s):  
A. Hornbruch ◽  
L. Wolpert

The presence of polarizing activity in the limb buds of developing avian embryos determines the pattern of the anteroposterior axis of the limbs in the adult. Maps of the spatial distribution and the strength of the signal within limb buds of different stages are well documented. Polarizing activity can also be found in Hensen's node in the early embryo. We have mapped the distribution of polarizing activity as it emerges from Hensen's node and spreads into the flank tissue of the embryo. There is a clear change in the local pattern of expression of polarizing activity between stage 8 and 18. Almost no activity is measured for stages 8 and 9. More or less uniform levels of around 10% are spread along the flank lateral to the unsegmented somitic mesoderm from somite position 12 to 22 in stage 10 embryos. Some 6 to 8 h later at stage 12, there is a distinct peak of activity at somite position 18, the middle of the wing field. This peak increases at stages 13 to 15 and its position traverses to the posterior edge of the wing field. Full strength of activity is reached shortly before the onset of limb bud formation at stage 16 to 17. Stages 16 to 18 were investigated for polarizing activity in the wing and the leg field. Low levels of polarizing activity are present in the anterior leg field at stages 16 and 17 but have disappeared by stage 18 and all activity is confined to the posterior part of the leg bud.


Sign in / Sign up

Export Citation Format

Share Document