scholarly journals CRISPR/Cas9-engineered Drosophila knock-in models to study VCP diseases

Author(s):  
Jordan M. Wall ◽  
Ankita Basu ◽  
Elizabeth R.M. Zunica ◽  
Olga S. Dubuisson ◽  
Kathryn Pergola ◽  
...  

Valosin containing protein (VCP) is a hexameric type II AAA ATPase required for several cellular processes including ER-associated degradation, organelle biogenesis, autophagy and membrane fusion. VCP contains three domains: a regulatory N-terminal domain and two ATPase domains (D1 and D2). Mutations in the N-terminal and D1 domains are associated with several degenerative diseases, including Multisystem Proteinopathy (MSP-1) and ALS. However, patients with VCP mutations vary widely in their pathology and clinical penetrance, making it difficult to devise effective treatment strategies. Having a deeper understanding of how each mutation affects VCP function could enhance the prediction of clinical outcomes and design of personalized treatment options. Over-expressing VCP patient mutations in Drosophila has been shown to mimic many pathologies observed in human patients. The power of a genetically tractable model organism coupled with well-established in vivo assays and a relatively short life cycle make Drosophila an attractive system to study VCP disease pathogenesis and novel treatment strategies. Using CRISPR/Cas9, we have generated individual Drosophila knock-in mutants that include nine hereditary VCP disease mutations. We validate that these models display many hallmarks of VCP-mediated degeneration, including progressive decline in mobility, protein aggregate accumulation and defects in lysosomal and mitochondrial function. We also made some novel and unexpected findings, including laminopathies and sex-specific phenotypic differences in several mutants. Taken together, the Drosophila VCP disease models we have generated in this study will be useful for studying the etiology of individual VCP patient mutations and for testing potential genetic and/or pharmacological therapies.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Leila M. Soravia ◽  
Franz Moggi ◽  
Dominique J.-F. de Quervain

AbstractAlcohol-associated memories and craving play a crucial role in the development and maintenance of alcohol use disorder (AUD). As treatment options are limited in AUD, novel treatment strategies focus on the manipulation of alcohol-associated memories. The stress hormone cortisol affects various memory processes, and first clinical studies have shown that it inhibits the retrieval of disorder-specific memories and enhances extinction memory. This study aimed to investigate the effects of a single oral administration of cortisol on craving in patients with AUD during repeated in vivo exposure to alcohol pictures and the preferred alcoholic drink. In a double-blind, block-randomized, placebo-controlled cross-over design, 46 patients with AUD were treated with two sessions of in vivo exposure to alcohol. Cortisol (20 mg) or placebo was orally administered 1 h before each test day. Craving, stress, and cortisol were repeatedly measured during exposure sessions. Results show, that cortisol administration had distinct effects on craving depending on the severity of AUD and test day. While cortisol administration significantly enhanced craving during exposure on the first test day in patients with less severe AUD, it reduced craving in patients with more severe AUD. Independent of the cortisol administration, repeated in vivo exposure reduced craving from test day 1 to test day 2. In conclusion, adding cortisol to in vivo exposure might be a promising approach for reducing the strength of alcohol-associated memories and might promote the consolidation of extinction memory in patients with severe AUD. However, the differential effect of cortisol on craving depending on AUD severity cannot be conclusively explained and highlights the need for future studies elucidating the underlying mechanism.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Victoria Damerell ◽  
Michael S. Pepper ◽  
Sharon Prince

AbstractSarcomas are complex mesenchymal neoplasms with a poor prognosis. Their clinical management is highly challenging due to their heterogeneity and insensitivity to current treatments. Although there have been advances in understanding specific genomic alterations and genetic mutations driving sarcomagenesis, the underlying molecular mechanisms, which are likely to be unique for each sarcoma subtype, are not fully understood. This is in part due to a lack of consensus on the cells of origin, but there is now mounting evidence that they originate from mesenchymal stromal/stem cells (MSCs). To identify novel treatment strategies for sarcomas, research in recent years has adopted a mechanism-based search for molecular markers for targeted therapy which has included recapitulating sarcomagenesis using in vitro and in vivo MSC models. This review provides a comprehensive up to date overview of the molecular mechanisms that underpin sarcomagenesis, the contribution of MSCs to modelling sarcomagenesis in vivo, as well as novel topics such as the role of epithelial-to-mesenchymal-transition (EMT)/mesenchymal-to-epithelial-transition (MET) plasticity, exosomes, and microRNAs in sarcomagenesis. It also reviews current therapeutic options including ongoing pre-clinical and clinical studies for targeted sarcoma therapy and discusses new therapeutic avenues such as targeting recently identified molecular pathways and key transcription factors.


Pharmaceutics ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 202 ◽  
Author(s):  
Sonia Vallet ◽  
Julia-Marie Filzmoser ◽  
Martin Pecherstorfer ◽  
Klaus Podar

Bone disease, including osteolytic lesions and/or osteoporosis, is a common feature of multiple myeloma (MM). The consequences of skeletal involvement are severe pain, spinal cord compressions, and bone fractures, which have a dramatic impact on patients’ quality of life and, ultimately, survival. During the past few years, several landmark studies significantly enhanced our insight into MM bone disease (MBD) by identifying molecular mechanisms leading to increased bone resorption due to osteoclast activation, and decreased bone formation by osteoblast inhibition. Bisphosphonates were the mainstay to prevent skeletal-related events in MM for almost two decades. Excitingly, the most recent approval of the receptor activator of NF-kappa B ligand (RANKL) inhibitor, denosumab, expanded treatment options for MBD, for patients with compromised renal function, in particular. In addition, several other bone-targeting agents, including bone anabolic drugs, are currently in preclinical and early clinical assessment. This review summarizes our up-to-date knowledge on the pathogenesis of MBD and discusses novel state-of-the-art treatment strategies that are likely to enter clinical practice in the near future.


2019 ◽  
Vol 20 (15) ◽  
pp. 3757 ◽  
Author(s):  
Beatrice Bachmeier ◽  
Dieter Melchart

The efficacy of the plant-derived polyphenol curcumin, in various aspects of health and wellbeing, is matter of public interest. An internet search of the term “Curcumin” displays about 12 million hits. Among the multitudinous information presented on partly doubtful websites, there are reports attracting the reader with promises ranging from eternal youth to cures for incurable diseases. Unfortunately, many of these reports are not based on scientific evidence, but they feed the desideratum of the reader for a “miracle cure”. This circumstance makes it very difficult for researchers, who work in a scientifically sound and evidence-based manner on the therapeutic benefits (or side effects) of curcumin, to demarcate their results from sensational reports that circulate in the web and in other media. This is only one of many obstacles making it difficult to pave curcumin’s way into clinical application; others are its nonpatentability and low economic usability. A further impediment comes from scientists who never worked with curcumin or any other natural plant-derived compound in their own labs. They have never tested these compounds in any scientific assay, neither in vitro nor in vivo; however, they claim, in a sometimes polemic manner, that everything that has so far been published on curcumin’s molecular effects is based on artefacts. The here presented Special Issue comprises a collection of five scientifically sound articles and nine reviews reporting on the therapeutic benefits and the molecular mechanisms of curcumin or of chemically modified curcumin in various diseases ranging from malignant tumors to chronic diseases, microbial infection, and even neurodegenerative diseases. The excellent results of the scientific projects that underlie the five original papers give reason to hope that curcumin will be part of novel treatment strategies in the near future—either as monotherapy or in combination with other drugs or therapeutic applications.


Author(s):  
William Hicks ◽  
Cylaina Bird ◽  
Kalil Abdullah

Despite advances in understanding of the molecular pathogenesis of glioma, outcomes remain dismal. Developing successful treatments for glioma requires faithful in vivo disease modeling and rigorous preclinical testing. Murine models, including xenograft, syngeneic, and genetically engineered models, are used to study gliomagenesis, identify methods of tumor progression, and test novel treatment strategies. Since the discovery of highly recurrent isocitrate dehydrogenase (IDH) mutations in lower-grade gliomas, there is increasing emphasis on effective modeling of IDH mutant brain tumors. Improvements in preclinical models that capture the phenotypic and molecular heterogeneity of gliomas are critical for the development of effective new therapies. Herein, we explore the current status, advancements, and challenges with contemporary murine glioma models.


2020 ◽  
Vol 9 (Suppl. 1) ◽  
pp. 17-30 ◽  
Author(s):  
Alan Chun Hong Lee ◽  
George J. Kahaly

<b><i>Background:</i></b> Both Graves’ hyperthyroidism (GH) and Graves’ orbitopathy (GO) are associated with significant adverse health consequences. All conventional treatment options have limitations regarding efficacy and safety. Most importantly, they do not specifically address the underlying immunological mechanisms. We aim to review the latest development of treatment approaches in these two closely related disorders. <b><i>Summary:</i></b> Immunotherapies of GH have recently demonstrated clinical efficacy in preliminary studies. They include ATX-GD-59, an antigen-specific immunotherapy which restores immune tolerance to the thyrotropin receptor; iscalimab, an anti-CD40 monoclonal antibody which blocks the CD40-CD154 costimulatory pathway in B-T cell interaction; and K1-70, a thyrotropin receptor-blocking monoclonal antibody. Novel treatment strategies have also become available in GO. Mycophenolate significantly increased the overall response rate combined with standard glucocorticoid (GC) treatment compared to GC monotherapy. Tocilizumab, an anti-interleukin 6 receptor monoclonal antibody, displayed strong anti-inflammatory action in GC-resistant cases. Teprotumumab, an anti-insulin-like growth factor 1 receptor monoclonal antibody, resulted in remarkable improvement in terms of disease activity, proptosis, and diplopia. Further, rituximab appears to be useful in active disease of recent onset without impending dysthyroid optic neuropathy. <b><i>Key Messages:</i></b> Therapeutic advances will continue to optimize our management of GH and associated orbitopathy in an effective and safe manner.


Tumor Biology ◽  
2020 ◽  
Vol 42 (12) ◽  
pp. 101042832098056
Author(s):  
Evangelos Koustas ◽  
Panagiotis Sarantis ◽  
Margarita Theodorakidou ◽  
Michalis V Karamouzis ◽  
Stamatios Theocharis

Salivary gland carcinomas are a group of heterogeneous tumors of different histological subtypes, presenting relatively low incidence but the entire variable of types. Although novel treatment options for salivary gland carcinomas patients’ outcomes have improved, the treatment of this type of cancer is still not standardized. In addition, a significant number of patients, with a lack of optimal treatment strategies, have reduced survival. In the last two decades, a plethora of evidence pointed to the importance of autophagy, an essential catabolic process of cytoplasmatic component digestion, in cancer. In vitro and in vivo studies highlight the importance of autophagy in salivary gland carcinomas development as a tumor suppressor or promoter mechanism. Despite the potential of autophagy in salivary gland carcinomas development, no therapies are currently available that specifically focus on autophagy modulation in salivary gland carcinomas. In this review, we summarize current knowledge and clinical trials in regard to the interplay between autophagy and the development of salivary gland carcinomas. Autophagy manipulation may be a putative therapeutic strategy for salivary gland carcinomas patients.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1979
Author(s):  
Andrea Jess Josiah ◽  
Danielle Twilley ◽  
Sreejarani Kesavan Pillai ◽  
Suprakas Sinha Ray ◽  
Namrita Lall

Keratinocyte carcinoma (KC) is a form of skin cancer that develops in keratinocytes, which are the predominant cells present in the epidermis layer of the skin. Keratinocyte carcinoma comprises two sub-types, namely basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). This review provides a holistic literature assessment of the origin, diagnosis methods, contributing factors, and current topical treatments of KC. Additionally, it explores the increase in KC cases that occurred globally over the past ten years. One of the principal concepts highlighted in this article is the adverse effects linked to conventional treatment methods of KC and how novel treatment strategies that combine phytochemistry and transdermal drug delivery systems offer an alternative approach for treatment. However, more in vitro and in vivo studies are required to fully assess the efficacy, mechanism of action, and safety profile of these phytochemical based transdermal chemotherapeutics.


2019 ◽  
Vol 20 (19) ◽  
pp. 4917 ◽  
Author(s):  
Rittler ◽  
Baranyi ◽  
Molnár ◽  
Garay ◽  
Jalsovszky ◽  
...  

Malignant melanoma is one of the most metastatic cancer types, and despite recent success with novel treatment strategies, there is still a group of patients who do not respond to any therapies. Earlier, the prenylation inhibitor hydrophilic bisphosphonate zoledronic acid (ZA) was found to inhibit melanoma growth in vitro, but only a weaker effect was observed in vivo due to its hydrophilic properties. Recently, lipophilic bisphosphonates (such as BPH1222) were developed. Accordingly, for the first time, we compared the effect of BPH1222 to ZA in eight melanoma lines using viability, cell-cycle, clonogenic and spheroid assays, videomicroscopy, immunoblot, and xenograft experiments. Based on 2D and spheroid assays, the majority of cell lines were more sensitive to BPH. The activation of Akt and S6 proteins, but not Erk, was inhibited by BPH. Additionally, BPH had a stronger apoptotic effect than ZA, and the changes of Rheb showed a correlation with apoptosis. In vitro, only M24met cells were more sensitive to ZA than to BPH; however, in vivo growth of M24met was inhibited more strongly by BPH. Here, we present that lipophilic BPH is more effective on melanoma cells than ZA and identify the PI3K pathway, particularly Rheb as an important mediator of growth inhibition.


2020 ◽  
Vol 52 (12) ◽  
pp. 2020-2033
Author(s):  
Xiang Li ◽  
Zhiming Peng ◽  
Lingli Long ◽  
Xiaofang Lu ◽  
Kai Zhu ◽  
...  

AbstractTraditional therapeutic strategies for spinal cord injury (SCI) are insufficient to repair locomotor function because of the failure of axonal reconnection and neuronal regeneration in the injured central nervous system (CNS). Neural stem cell (NSC) transplantation has been considered a potential strategy and is generally feasible for repairing the neural circuit after SCI; however, the most formidable problem is that the neuronal differentiation rate of NSCs is quite limited. Therefore, it is essential to induce the neuronal differentiation of NSCs and improve the differentiation rate of NSCs in spinal cord repair. Our results demonstrate that both Wnt5a and miRNA200b-3p could promote NSC differentiation into neurons and that Wnt5a upregulated miRNA200b-3p expression through MAPK/JNK signaling to promote NSC differentiation into neurons. Wnt5a could reduce RhoA expression by upregulating miRNA200b-3p expression to inhibit activation of the RhoA/Rock signaling pathway, which has been reported to suppress neuronal differentiation. Overexpression of RhoA abolished the neurogenic capacity of Wnt5a and miRNA200b-3p. In vivo, miRNA200b-3p was critical for Wnt5a-induced NSC differentiation into neurons to promote motor functional and histological recovery after SCI by suppressing RhoA/Rock signaling. These findings provide more insight into SCI and help with the identification of novel treatment strategies.


Sign in / Sign up

Export Citation Format

Share Document